CSE 312

Foundations of Computing II

Lecture 22: Loose Ends and Maximum Likelihood Estimation

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Feedback

- I'm going too fast for some of you.
 - I'll pause more to give you a chance to ask questions.
 - You ask more questions.
 - Read the section or watch videos before class.
 - Come to next class with questions about previous class.
- "Examples in class are too complex."
 - I can't seem to please all of the people all of the time!
- Which material is in the book?
 - Pretty much everything.
- Grades/quizzes/etc don't worry!
- "There needs to be more commenting on the python code to explain new syntax, like for calling objects from other classes."
 - Please send a message on edstem pointing out places where you think more comments are needed and we can try to add some. [For both past and future psets]

Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let E be an event and let Y be a discrete random variable that takes values $\{1,2,...,n\}$. Then,

$$Pr[E] = \sum_{i=1}^{n} Pr[E|Y=i]Pr(Y=i)$$

Law of Total Expectation. Let X be a random variable and let Y be a discrete random variable that takes values $\{1,2,...,n\}$. Then,

$$E[X] = \sum_{i=1}^{n} E[X|Y=i] \Pr(Y=i)$$

Law of Total Probability

Law of Total Probability (discrete). Let E be an event and let Y be a discrete random variable that takes values $\{1,2,...,n\}$. Then,

$$Pr[E] = \sum_{i=1}^{n} Pr[E|Y=i]Pr(Y=i)$$

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,

$$\Pr[E] = \int_{-\infty}^{+\infty} \Pr[E|Y = y] f_Y(y) dy$$

Example: Number of accidents a random person has in a year is Poisson(Y) where Y itself is a random variable. What is the probability that a random person has two accidents?

Discrete example: Continuous example:

Y is Binomial (100, 0.3). Y is exponential with parameter 1

Law of Total Expectation

Law of Total Expectation (discrete. Let X be a random variable and Y be a discrete random variable that takes values $\{1,2,...,n\}$. Then,

$$E[X] = \sum_{i=1}^{n} E[X|Y=i] \Pr(Y=i)$$

Law of Total Expectation (cont). Let X be a random variable and let Y be a continuous random variable. Then,

$$E[X] = \int_{-\infty}^{+\infty} E[X|Y = y] f_Y(y) \, \mathrm{d}y$$

Example:

X is discrete uniform on $\{0, ... 10\}$. Y is discrete uniform on $\{0, ... X\}$. What is E(Y)?

Example:

X is continuous uniform on (0,10). Y is continuous uniform on (0,X). What is $\mathrm{E}(Y)$?

Agenda

- Idea: Estimation •
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

Probability vs statistics

Probability vs statistics

Probability: Viewpoint up to Now

 $\theta = \frac{\text{known}}{\text{parameter}}$

 θ tells us how samples are distributed.

 $\mathbb{P}(x;\theta)$ viewed as a function of x (fixed θ)

Statistics: Parameter Estimation – Workflow

Statistics: Parameter Estimation – Workflow

 $\mathcal{L}(x|\theta)$ viewed as a function of θ (fixed x)

Example: $\mathcal{L}(x|\theta)$ = coin flip distribution with unknown θ = probability of heads

Observation: HTTHHHTHTHTTTTHT

Goal: Estimate θ

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence. of flips

TTHTHTTH

Given this data, what would you estimate p is?

```
Poll: https://pollev.com/ annakarlin185

a. 1/2

b. 5/8

c. 3/8

d. 1/4
```

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

$$\mathcal{L}(HHTHH \mid \theta) = \theta^4(1 - \theta)$$

Max Prob of seeing HHTHH

Likelihood of Different Observations

(Discrete case)

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \mathbb{P}(x_i; \theta)$$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n , find $\hat{\theta}$ ("the MLE") of model such that $L(x_1, \ldots, x_n | \hat{\theta})$ is maximized! $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(x_1, \ldots, x_n | \theta)$

Usually: Solve
$$\frac{\partial L(x_1, \dots, x_n | \theta)}{\partial \theta} = 0$$
 or $\frac{\partial \ln L(x_1, \dots, x_n | \theta)}{\partial \theta} = 0$ [+check it's a max!]

Likelihood vs. Probability

A **probability function** $Pr(x;\theta)$ is a function with input being an event x for some fixed probability model (w/ param θ).

$$\sum_{x} \Pr(x;\theta) = 1$$

A **likelihood function** $\mathcal{L}(x \mid \theta)$ is a function with input being θ (the param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different questions. We are trying to find the θ that maximizes likelihood, thus we are looking for the **maximum likelihood estimator**.

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails -1.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob.}$ heads.

$$L(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\frac{\partial}{\partial \theta} L(x_1, \dots, x_n | \theta) = ???$$

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product....

Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations

$$x_1, \ldots, x_n$$
 is

$$\mathcal{LL}(x_1, \dots, x_n | \theta) = \ln \mathcal{L}(x_1, \dots, x_n | \theta)$$

$$= \ln \prod_{i=1}^n \mathbb{P}(x_i; \theta) = \sum_{i=1}^n \ln \mathbb{P}(x_i; \theta)$$

Useful log properties

$$\log(ab) = \log(a) + \log(b)$$
$$\log(a/b) = \log(a) - \log(b)$$
$$\log(a^b) = b\log(a)$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - l.e., $n_H + n_T = n$ Goal: estimate $\theta = \text{prob. heads.}$

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) =$$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails – l.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$

$$\hat{\theta} = \frac{n_H}{n}$$
Solve $n_H \cdot \frac{1}{\hat{\theta}} - n_T \cdot \frac{1}{1 - \hat{\theta}} = 0$

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

The Continuous Case

Given n samples $x_1, ..., x_n$ from a Gaussian $\mathcal{N}(\mu, \sigma^2)$, estimate $\theta = (\mu, \sigma^2)$

Definition. The **likelihood** of independent observations x_1, \ldots, x_n is

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$$

Density function! (Why?)

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ? [i.e., we are given the promise that the variance is one]

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ ?

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \theta)^2}{2}} =$$

$$\log(ab) = \log(a) + \log(b)$$
$$\log(a/b) = \log(a) - \log(b)$$
$$\log(a^b) = b\log(a)$$

Normal outcomes x_1, \dots, x_n , known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{-(x_i - \theta)^2}{2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{\frac{-(x_i - \theta)^2}{2}}$$

$$\ln \mathcal{L}(x_1, ..., x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Note:
$$\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta) = \sum_{i=1}^n x_i - n\theta = 0$$

$$\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$$

 $\hat{\theta} = \frac{\sum_{i}^{n} x_{i}}{n}$ In other words, MLE is the sample mean of the data.

Next: n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. Most likely μ and σ^2 ?

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

General Recipe

- 1. **Input** Given n iid samples $x_1, ..., x_n$ from parametric model with parameters θ .
- 2. **Likelihood** Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \Pr(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. **Log** Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. **Differentiate** Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. **Solve for** $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Another example of continuous law of total probability

X and Y are independent, where X has CDF $F_X(x)$ and Y has pdf $f_Y(y)$. What is P(X > 5Y)?

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,

$$\Pr[E] = \int_{-\infty}^{+\infty} \Pr[E|Y = y] f_Y(y) dy$$