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Foundations of Computing II
Lecture 22: Loose Ends and Maximum Likelihood Estimation
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Feedback

• I’m going too fast for some of you. 
– I’ll pause more to give you a chance to ask questions.
– You ask more questions.
– Read the section or watch videos before class.
– Come to next class with questions about previous class.

• “Examples in class are too complex. “
– I can’t seem to please all of the people all of the time!

• Which material is in the book?
– Pretty much everything.

• Grades/quizzes/etc – don’t worry!
• “There needs to be more commenting on the python code to explain new 

syntax, like for calling objects from other classes.”
– Please send a message on edstem pointing out places where you think more 

comments are needed and we can try to add some. [For both past and future psets]
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Law of Total Probability and Law of Total Expectation
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Law of Total Probability. Let E be an event and let 𝑌 be a discrete 
random variable that takes values {1,2, … , 𝑛}. Then,

Pr[𝐸] = .
!"#

$

𝑃𝑟 𝐸 𝑌 = 𝑖 Pr(𝑌 = 𝑖)

Law of Total Expectation. Let 𝑋 be a random variable and let  𝑌 be a 
discrete random variable that takes values {1,2, … , 𝑛}. Then,

𝐸[𝑋] = .
!"#

$

𝐸 𝑋 𝑌 = 𝑖 Pr(𝑌 = 𝑖)



Law of Total Probability
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Law of Total Probability (discrete). Let E be an event and let 𝑌 be a 
discrete random variable that takes values {1,2, … , 𝑛}. Then,

Pr[𝐸] = .
!"#

$

𝑃𝑟 𝐸 𝑌 = 𝑖 Pr(𝑌 = 𝑖)

Law of Total Probability (cont). Let 𝐸 be an event and let 𝑌 be a 
continuous random variable. Then,

Pr[𝐸] = 5
%&

'&
𝑃𝑟 𝐸 𝑌 = 𝑦 𝑓( 𝑦 d𝑦



Example: Number of accidents a random person has in a year 
is Poisson(𝑌) where 𝑌 itself is a random variable. What is the 
probability that a random person has two accidents?
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Discrete example: 
𝑌 is Binomial (100, 0.3).

Continuous example: 
𝑌 is exponential with parameter 1



Law of Total Expectation

6

Law of Total Expectation (discrete. Let 𝑋 be a random variable and 𝑌
be a discrete random variable that takes values {1,2, … , 𝑛}. Then,

𝐸[𝑋] = .
!"#

$

𝐸 𝑋 𝑌 = 𝑖 Pr(𝑌 = 𝑖)

Law of Total Expectation (cont). Let 𝑋 be a random variable and let 𝑌
be a continuous random variable. Then,

𝐸[𝑋] = 5
%&

'&
𝐸[𝑋|𝑌 = 𝑦]𝑓( 𝑦 d𝑦



Example: 
𝑋 is continuous uniform on 
0,10 . 𝑌 is continuous uniform 

on 0, 𝑋 . What is E(𝑌) ?
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Example: 
𝑋 is discrete uniform on {0, . . 10}. 
𝑌 is discrete uniform on {0, . . 𝑋}.
What is E(𝑌) ?



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps
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Probability vs statistics
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Probability
given model, predict 

data



Probability vs statistics
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Probability
given model, predict 

data

Statistics
given data, predict 

model
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Distribution
ℙ(𝑥; 𝜃)

Independent 
samples 𝑥!, … , 𝑥"
from ℙ(𝑥 ; 𝜃)

𝜃 = known parameter

Probability: Viewpoint up to Now

𝜃 tells us how samples are distributed.
ℙ(𝑥 ; 𝜃) viewed as a function of x (fixed 𝜃)



Statistics: Parameter Estimation – Workflow
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Distribution
ℙ(𝑥; 𝜃)

Independent 
samples 𝑥!, … , 𝑥"
from ℙ(𝑥; 𝜃)

Algorithm ?𝜃

Parameter 
estimate

𝜃 = unknown parameter Don’t know how samples are distributed.



Statistics: Parameter Estimation – Workflow
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Distribution
ℙ(𝑥; 𝜃)

Independent 
samples 𝑥!, … , 𝑥"
from ℙ(𝑥; 𝜃)

Algorithm ?𝜃

Parameter 
estimate

𝜃 = unknown parameter

Example: ℒ(𝑥|𝜃) = coin flip distribution with unknown 𝜃 = probability of heads  

Observation:  HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 𝜃

Don’t know how samples are distributed.

ℒ(𝑥|𝜃) viewed as a function of 𝜃 (fixed x)



Example

Suppose we have a mystery coin with some probability 𝑝 of coming up heads. We 
flip the coin 8 times, independent of other flips and see the following sequence. of 
flips

𝑇𝑇𝐻𝑇𝐻𝑇𝑇𝐻

Given this data, what would you estimate 𝑝 is?
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Poll:
a. 1/2
b. 5/8
c. 3/8
d. 1/4

https://pollev.com/ annakarlin185



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps
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Likelihood
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You tell me your best guess 
about the value of the unknown 
parameter 𝜃 (aka p) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate? 

Say we see outcome HHTHH. 



Likelihood
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ℒ 𝐻𝐻𝑇𝐻𝐻 | 𝜃 = 𝜃1(1 − 𝜃)

Say we see outcome HHTHH. 
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Max Prob of seeing HHTHH

𝜃

You tell me your best guess 
about the value of the unknown 
parameter 𝜃 (aka p) is 4/5. Is 
there some way that you can 
argue “objectively” that this is 
the best estimate? 



Likelihood of Different Observations
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Definition. The likelihood of independent observations 𝑥#, … . , 𝑥$ is

ℒ 𝑥#, … . , 𝑥$ 𝜃 =F
!"#

$

ℙ(𝑥!; 𝜃)

(Discrete case)

Maximum Likelihood Estimation (MLE). Given data 𝑥#, … . , 𝑥$, find 
?𝜃 (“the MLE”) of model such that 𝐿 𝑥#, … . , 𝑥$ ?𝜃 is maximized!

?𝜃 = argmax
2

ℒ 𝑥#, … . , 𝑥$ 𝜃

Usually: Solve 
"# 𝑥$, … . , 𝑥% 𝜃

"&
= 0 or 

" '( # 𝑥$, … . , 𝑥% 𝜃
"&

= 0 [+check it’s a max!]   



Likelihood vs. Probability

A probability function Pr(𝑥 ; 𝜃) is a function with input being an 
event 𝑥 for some fixed probability model (w/ param 𝜃). 

!
!

Pr 𝑥 ; 𝜃 = 1

A likelihood function ℒ 𝑥 𝜃) is a function with input being 𝜃 (the 
param of the prob. Model) for some fixed dataset 𝑥.

These notions are very closely connected, but answer different 
questions. We are trying to find the 𝜃 that maximizes likelihood,
thus we are looking for the maximum likelihood estimator.
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Example – Coin Flips

Observe: Coin-flip outcomes 𝑥!, … , 𝑥", with 𝑛# heads, 𝑛$ tails
– I.e., 𝑛3 + 𝑛4 = 𝑛
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𝜕
𝜕𝜃

𝐿 𝑥#, … . , 𝑥$ 𝜃 = ? ? ?

Goal: estimate 𝜃 = prob. heads. 

While it is not difficult to compute this derivative, we make our 
lives easier by observing that we are always taking a derivative 
of a product….

𝐿 𝑥#, … . , 𝑥$ 𝜃 = 𝜃$! 1 − 𝜃 $"



Log-Likelihood
We can save some work if we work with the log-likelihood instead of the 
likelihood directly.

Useful log properties
log 𝑎𝑏 = log 𝑎 + log 𝑏
log 𝑎/𝑏 = log 𝑎 − log(𝑏)

log 𝑎) = 𝑏𝑙𝑜𝑔(𝑎)
21

Definition. The log-likelihood of independent observations 
𝑥#, … . , 𝑥$ is

ℒℒ 𝑥#, … . , 𝑥$ 𝜃 = ln ℒ(𝑥#, … , 𝑥$|𝜃)

= lnF
!"#

$

ℙ(𝑥!; 𝜃) = .
!"#

$

ln ℙ(𝑥!; 𝜃)



Example – Coin Flips

Observe: Coin-flip outcomes 𝑥!, … , 𝑥", with 𝑛# heads, 𝑛$ tails
– I.e., 𝑛3 + 𝑛4 = 𝑛
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ℒ 𝑥#, … . , 𝑥$ 𝜃 = 𝜃$! 1 − 𝜃 $"

Goal: estimate 𝜃 = prob. heads. 

ln ℒ 𝑥#, … . , 𝑥$ 𝜃 =



Example – Coin Flips

Observe: Coin-flip outcomes 𝑥!, … , 𝑥", with 𝑛# heads, 𝑛$ tails
– I.e., 𝑛3 + 𝑛4 = 𝑛
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ℒ 𝑥#, … . , 𝑥$ 𝜃 = 𝜃$! 1 − 𝜃 $"

Goal: estimate 𝜃 = prob. heads. 

ln ℒ 𝑥#, … . , 𝑥$ 𝜃 = 𝑛3 ln 𝜃 + 𝑛4 ln(1 − 𝜃)
𝜕
𝜕𝜃

ln ℒ 𝑥#, … . , 𝑥$ 𝜃 = 𝑛3 ⋅
1
𝜃
− 𝑛4 ⋅

1
1 − 𝜃

Solve 𝑛3 ⋅
#
52
− 𝑛4 ⋅

#
#%52

= 0

!𝜃 = !!
!



Brain Break
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Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps
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The Continuous Case

Given 𝑛 samples 𝑥!, … , 𝑥" from a Gaussian 𝒩(𝜇, 𝜎%), estimate 
𝜃 = 𝜇, 𝜎%
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Definition. The likelihood of independent observations 𝑥#, … . , 𝑥$ is

ℒ 𝑥#, … . , 𝑥$ 𝜃 =F
!"#

$

𝑓(𝑥!; 𝜃)

Density function! (Why?)



Why density?

• Density ≠ probability, but:
– For maximizing likelihood, we really only care about relative 

likelihoods, and density captures that
– has desired property that likelihood increases with better fit to the 

model
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥$, … , 𝑥% ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?
[i.e., we are given the promise that the variance is one]
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥$, … , 𝑥% ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 0?

Unlikely …
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0−1−2−3−4 1 2 3 4 5 6

𝑛 samples 𝑥$, … , 𝑥% ∈ ℝ from Gaussian 𝒩(𝜇, 1). Most likely 𝜇?

𝜇 = 3?
Better, but 
optimal? 



Example – Gaussian Parameters

Normal outcomes 𝑥!, … , 𝑥", known variance 𝜎% = 1
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ℒ 𝑥#, … . , 𝑥$ 𝜃 =F
!"#

$
1
2𝜋

𝑒%
6#%2 $

7 =

Goal: estimate 𝜃 expectation

log 𝑎𝑏 = log 𝑎 + log 𝑏
log 𝑎/𝑏 = log 𝑎 − log(𝑏)

log 𝑎! = 𝑏𝑙𝑜𝑔(𝑎)



Example – Gaussian Parameters

Normal outcomes 𝑥!, … , 𝑥", known variance 𝜎% = 1
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ℒ 𝑥#, … . , 𝑥$ 𝜃 =F
!"#

$
1
2𝜋

𝑒%
6#%2 $

7 =
1
2𝜋

$

F
!"#

$

𝑒%
6#%2 $
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Goal: estimate 𝜃 expectation

ln ℒ 𝑥#, … . , 𝑥$ 𝜃 = − 𝑛
ln 2𝜋
2

−.
!"#

$
𝑥! − 𝜃 7

2



Example – Gaussian Parameters

Normal outcomes 𝑥#, … , 𝑥$, known variance 𝜎7 = 1
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Goal: estimate 𝜃= expectation

ln ℒ 𝑥$, … . , 𝑥% 𝜃 = − 𝑛
ln 2𝜋
2

−H
78$

%
𝑥7 − 𝜃 9

2



Example – Gaussian Parameters

Normal outcomes 𝑥#, … , 𝑥$, known variance 𝜎7 = 1
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Goal: estimate 𝜃= expectation

ln ℒ 𝑥$, … . , 𝑥% 𝜃 = − 𝑛
ln 2𝜋
2

−H
78$

%
𝑥7 − 𝜃 9

2

𝜕
𝜕𝜃

ln ℒ 𝑥#, … . , 𝑥$ 𝜃 =.
!"#

$

(𝑥! − 𝜃) =.
!"#

$

𝑥! − 𝑛𝜃 = 0

Note: "
"&

:";& #

9
= $

9
⋅ 2 ⋅ 𝑥7 − 𝜃 ⋅ −1 = 𝜃 − 𝑥7

?𝜃 =
∑!$ 𝑥!
𝑛

In other words, MLE is the 
sample mean of the data.
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0−1−2−3−4 1 2 3 4 5 6

Next: 𝑛 samples 𝑥$, … , 𝑥% ∈ ℝ from Gaussian 𝒩(𝜇, 𝜎9). Most likely 𝜇 and 
𝜎9? 



Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps

36



General Recipe

1. Input Given 𝑛 iid samples 𝑥*, … , 𝑥+ from parametric model with 
parameters 𝜃.
2. Likelihood Define your likelihood ℒ 𝑥*, … . , 𝑥+ 𝜃 .

– For discrete ℒ 𝑥$, … . , 𝑥% 𝜃 = ∏78$
% Pr 𝑥7 ; 𝜃

– For continuous ℒ 𝑥$, … . , 𝑥% 𝜃 = ∏78$
% 𝑓 𝑥7 ; 𝜃

3. Log  Compute ln ℒ 𝑥*, … . , 𝑥+ 𝜃
4. Differentiate Compute ,

,-
ln ℒ 𝑥*, … . , 𝑥+ 𝜃

5. Solve for +𝜃 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a 
maximum, but we won’t ask you to do that in CSE 312.
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Another example of continuous law of total probability

𝑋 and 𝑌 are independent, where 𝑋 has CDF F&(𝑥) and 𝑌 has 
pdf f'(𝑦). What is P 𝑋 > 5𝑌 ?
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Law of Total Probability (cont). Let 𝐸 be an event and let 𝑌 be a continuous random variable. Then,

Pr[𝐸] = ?
#$

%$
𝑃𝑟 𝐸 𝑌 = 𝑦 𝑓& 𝑦 d𝑦


