CSE 312
Foundations of Computing II

Lecture 22: Loose Ends and Maximum Likelihood Estimation

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself 😊
Feedback

• I’m going too fast for some of you.
 – I’ll pause more to give you a chance to ask questions.
 – You ask more questions.
 – Read the section or watch videos before class.
 – Come to next class with questions about previous class.
• “Examples in class are too complex.”
 – I can’t seem to please all of the people all of the time!
• Which material is in the book?
 – Pretty much everything.
• Grades/quizzes/etc – don’t worry!
• “There needs to be more commenting on the python code to explain new syntax, like for calling objects from other classes.”
 – Please send a message on edstem pointing out places where you think more comments are needed and we can try to add some. [For both past and future psets]
Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let E be an event and let Y be a discrete random variable that takes values $\{1, 2, \ldots, n\}$. Then,

$$\Pr[E] = \sum_{i=1}^{n} \Pr[E|Y = i] \Pr(Y = i)$$

Law of Total Expectation. Let X be a random variable and let Y be a discrete random variable that takes values $\{1, 2, \ldots, n\}$. Then,

$$E[X] = \sum_{i=1}^{n} E[X|Y = i] \Pr(Y = i)$$
Law of Total Probability

Law of Total Probability (discrete). Let E be an event and let Y be a discrete random variable that takes values $\{1, 2, \ldots, n\}$. Then,

$$\Pr[E] = \sum_{i=1}^{n} \Pr[E|Y = i] \Pr(Y = i)$$

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,

$$\Pr[E] = \int_{-\infty}^{+\infty} \Pr[E|Y = y] f_Y(y) \, dy$$
Example: Number of accidents a random person has in a year is Poisson(Y) where Y itself is a random variable. What is the probability that a random person has two accidents?

Discrete example:
Y is Binomial (100, 0.3).

Continuous example:
Y is exponential with parameter 1
Law of Total Expectation

Law of Total Expectation (discrete). Let \(X \) be a random variable and \(Y \) be a discrete random variable that takes values \(\{1,2,\ldots,n\} \). Then,

\[
E[X] = \sum_{i=1}^{n} E[X|Y = i] \Pr(Y = i)
\]

Law of Total Expectation (cont). Let \(X \) be a random variable and let \(Y \) be a continuous random variable. Then,

\[
E[X] = \int_{-\infty}^{+\infty} E[X|Y = y] f_Y(y) \, dy
\]
Example:

\(X\) is discrete uniform on \(\{0, \ldots, 10\}\).
\(Y\) is discrete uniform on \(\{0, \ldots, X\}\).
What is \(E(Y)\) ?

Example:

\(X\) is continuous uniform on \((0, 10)\).
\(Y\) is continuous uniform on \((0, X)\). What is \(E(Y)\) ?
Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps
Probability vs statistics

\[\text{Ber}(p = 0.5) \xrightarrow{\text{Probability}} \text{given model, predict data} \xrightarrow{\text{P(THHTHHH)}} \]
Probability vs statistics

\[Ber(p = 0.5) \quad \rightarrow \quad \text{Probability} \quad \text{given model, predict data} \quad \rightarrow \quad P(THHTHH) \]

\[Ber(p = ???) \quad \leftarrow \quad \text{Statistics} \quad \text{given data, predict model} \quad \leftarrow \quad THHTHH \]
Probability: Viewpoint up to Now

\[\mathbb{P}(x; \theta) \]

Independent samples \(x_1, \ldots, x_n \) from \(\mathbb{P}(x; \theta) \)

\(\theta = \text{known} \) parameter

\(\theta \) tells us how samples are distributed.

\(\mathbb{P}(x; \theta) \) viewed as a function of \(x \) (fixed \(\theta \))
Don’t know how samples are distributed.
Distribution $\mathbb{P}(x; \theta)$

Independent samples x_1, \ldots, x_n from $\mathbb{P}(x; \theta)$

Algorithm

Don’t know how samples are distributed.

$\mathcal{L}(x|\theta)$ viewed as a function of θ (fixed x)

Example: $\mathcal{L}(x|\theta) = \text{coin flip distribution with unknown } \theta = \text{probability of heads}$

Observation: HTHHHHTHTHTTTHTHTTTTHTH

Goal: Estimate θ
Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence of flips:

$TTHTHTTH$

Given this data, what would you estimate p is?

Poll: [link](https://pollev.com/annakarlin185)

- a. $1/2$
- b. $5/8$
- c. $3/8$
- d. $1/4$
Agenda

• Idea: Estimation
• **Maximum Likelihood Estimation (example: mystery coin)**
• Continuous random variables
• General Steps
Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter \(\theta \) (aka p) is 4/5. Is there some way that you can argue “objectively” that this is the best estimate?
Likelihood

Say we see outcome **HHTHH**.

You tell me your best guess about the value of the unknown parameter θ (aka p) is $4/5$. Is there some way that you can argue “objectively” that this is the best estimate?

\[
\mathcal{L}(HHTHH \mid \theta) = \theta^4(1 - \theta)
\]
Likelihood of Different Observations

Definition. The likelihood of independent observations x_1, \ldots, x_n is

$$
\mathcal{L}(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} P(x_i; \theta)
$$

Maximum Likelihood Estimation (MLE). Given data x_1, \ldots, x_n, find $\hat{\theta}$ (“the MLE”) of model such that $L(x_1, \ldots, x_n | \hat{\theta})$ is maximized!

$$
\hat{\theta} = \arg\max_{\theta} \mathcal{L}(x_1, \ldots, x_n | \theta)
$$

Usually: Solve $\frac{\partial \mathcal{L}(x_1, \ldots, x_n | \theta)}{\partial \theta} = 0$ or $\frac{\partial \ln \mathcal{L}(x_1, \ldots, x_n | \theta)}{\partial \theta} = 0$ [+check it’s a max!]
Likelihood vs. Probability

A **probability function** $\Pr(x; \theta)$ is a function with input being an event x for some fixed probability model (w/ param θ).

$$\sum_x \Pr(x; \theta) = 1$$

A **likelihood function** $\mathcal{L}(x | \theta)$ is a function with input being θ (the param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different questions. We are trying to find the θ that maximizes likelihood, thus we are looking for the **maximum likelihood estimator**.
Example – Coin Flips

Observe: Coin-flip outcomes x_1, \ldots, x_n, with n_H heads, n_T tails
– i.e., $n_H + n_T = n$

Goal: estimate $\theta = \text{prob. heads.}$

$L(x_1, \ldots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$

$$\frac{\partial}{\partial \theta} L(x_1, \ldots, x_n | \theta) = ???$$

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product....
Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations x_1, \ldots, x_n is

$$
\mathcal{L}(x_1, \ldots, x_n | \theta) = \ln \mathcal{L}(x_1, \ldots, x_n | \theta) \\
= \ln \prod_{i=1}^{n} \mathbb{P}(x_i; \theta) = \sum_{i=1}^{n} \ln \mathbb{P}(x_i; \theta)
$$

Useful log properties

- $\log(ab) = \log(a) + \log(b)$
- $\log(a/b) = \log(a) - \log(b)$
- $\log(a^b) = b \log(a)$
Example – Coin Flips

Observe: Coin-flip outcomes x_1, \ldots, x_n, with n_H heads, n_T tails

$\text{– l.e., } n_H + n_T = n$ \hspace{1cm} \textbf{Goal:} estimate $\theta = \text{prob. heads.}$

$L(x_1, \ldots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$

$\ln L(x_1, \ldots, x_n | \theta) =$
Example – Coin Flips

Observe: Coin-flip outcomes x_1, \ldots, x_n, with n_H heads, n_T tails
– l.e., $n_H + n_T = n$

Goal: estimate $\theta = \text{prob. heads.}$

\[
\mathcal{L}(x_1, \ldots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}
\]

\[
\ln \mathcal{L}(x_1, \ldots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)
\]

\[
\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \ldots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}
\]

Solve $n_H \cdot \frac{1}{\hat{\theta}} - n_T \cdot \frac{1}{1 - \hat{\theta}} = 0$

\[
\hat{\theta} = \frac{n_H}{n}
\]
Brain Break
Agenda

• Idea: Estimation
• Maximum Likelihood Estimation (example: mystery coin)
• Continuous random variables
• General Steps
The Continuous Case

Given \(n \) samples \(x_1, \ldots, x_n \) from a Gaussian \(\mathcal{N}(\mu, \sigma^2) \), estimate \(\theta = (\mu, \sigma^2) \)

Definition. The **likelihood** of independent observations \(x_1, \ldots, x_n \) is

\[
\mathcal{L}(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} f(x_i; \theta)
\]

Density function! (Why?)
Why density?

• Density ≠ probability, but:
 – For maximizing likelihood, \textit{we really only care about relative likelihoods}, and density captures that
 – has desired property that likelihood increases with better fit to the model
n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ? [i.e., we are given the promise that the variance is one]
n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ?

$\mu = 0$?

Unlikely ...
n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely μ?

$\mu = 3$?

Better, but optimal?
Example – Gaussian Parameters

Normal outcomes x_1, \ldots, x_n, known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$
\mathcal{L}(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}} =
$$

\[
\log(ab) = \log(a) + \log(b) \\
\log(a/b) = \log(a) - \log(b) \\
\log(a^b) = \text{blog}(a)
\]
Example – Gaussian Parameters

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Goal: estimate θ expectation

\[
\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}} = \left(\frac{1}{\sqrt{2\pi}} \right)^n \prod_{i=1}^{n} e^{-\frac{(x_i - \theta)^2}{2}}
\]

\[
\ln \mathcal{L}(x_1, ..., x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}
\]
Example – Gaussian Parameters

Goal: estimate $\theta = \text{expectation}$

Normal outcomes x_1, \ldots, x_n, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \ldots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}$$
Example – Gaussian Parameters

Goal: estimate $\theta = \text{expectation}$

Normal outcomes x_1, \ldots, x_n, known variance $\sigma^2 = 1$

$$\ln L(x_1, \ldots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}$$

Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$

$$\frac{\partial}{\partial \theta} \ln L(x_1, \ldots, x_n | \theta) = \sum_{i=1}^{n} (x_i - \theta) = \sum_{i=1}^{n} x_i - n\theta = 0$$

$$\hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n}$$

In other words, MLE is the sample mean of the data.
Next: n samples $x_1, \ldots, x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, \sigma^2)$. Most likely μ and σ^2?
Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps
General Recipe

1. **Input** Given \(n \) iid samples \(x_1, \ldots, x_n \) from parametric model with parameters \(\theta \).

2. **Likelihood** Define your likelihood \(\mathcal{L}(x_1, \ldots, x_n | \theta) \).
 - For discrete \(\mathcal{L}(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} \Pr(x_i ; \theta) \)
 - For continuous \(\mathcal{L}(x_1, \ldots, x_n | \theta) = \prod_{i=1}^{n} f(x_i ; \theta) \)

3. **Log** Compute \(\ln \mathcal{L}(x_1, \ldots, x_n | \theta) \)

4. **Differentiate** Compute \(\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \ldots, x_n | \theta) \)

5. **Solve for** \(\hat{\theta} \) by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won’t ask you to do that in CSE 312.
Another example of continuous law of total probability

X and Y are independent, where X has CDF $F_X(x)$ and Y has pdf $f_Y(y)$. What is $P(X > 5Y)$?

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,

$$Pr[E] = \int_{-\infty}^{+\infty} Pr[E|Y = y] f_Y(y) \, dy$$