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Feedback

I’m going too fast for some of you.
— I’ll pause more to give you a chance to ask questions.
— You ask more questions.
— Read the section or watch videos before class.
— Come to next class with questions about previous class.
« “Examplesin class are too complex.
— | can’t seem to please all of the people all of the time!
* Which material is in the book?
— Pretty much everything.
* Grades/quizzes/etc — don’t worry!
* “There needs to be more commenting on the python code to explain new
syntax, like for calling objects from other classes.”

— Please send a message on edstem pointing out places where you think more
comments are needed and we can try to add some. [For both past and future psets]



Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let E be an event and let Y be a discrete
- random variable that takes values {1,2, ..., n}. Then,
’ n

_ Z Pr[E|Y = i]Pr(Y = i)
=1

| - Law of Total Expectation. Let X be a random variable and let Y be a
dlscrete random variable that takes values {1,2, ..., n}. Then,

ZE [ X|Y =i]Pr(Y =1i)



Law of Total Probability

| - Law of Total Probability (discrete). Let E be an event and let Y be a
dlscrete random variable that takes values {1,2, ..., n}. Then,

z Pr|E|Y = i]Pr(Y =)

_____________________________________________________________________________________________________________________________________________________________________

Law of Total Probability (cont). Let E be an event and let Y be a
- continuous random variable. Then,

Pr[E] = j PrIEIY = y] fr(3) dy

_____________________________________________________________________________________________________________________________________________________________________



Example: Number of accidents a random person has in a year
is Poisson(Y) where Y itself is a random variable. What is the
probability that a random person has two accidents?

Discrete example: Continuous example:
Y is Binomial (100, 0.3). Y is exponential with parameter 1



Law of Total Expectation

| - Law of Total Expectation (discrete. Let X be a random variable and Y
be a discrete random varlable that takes values {1,2, ..., n}. Then,

ZE | X|Y =i]Pr(Y =1i)

_____________________________________________________________________________________________________________________________________________________________________

: ~ Law of Total Expectation (cont). Let X be a random variable and let Y
be a continuous random variable. Then,

FIXI = [ EIXIY = 1f () dy

_____________________________________________________________________________________________________________________________________________________________________



Example: Example:
X is discrete uniform on {0, .. 10}. X is continuous uniform on

Y is discrete uniform on {0, .. X }. (0,10). Y is continuous uniform
Whatis E(Y)? on (0,X).Whatis E(Y)?



Agenda

|[dea: Estimation @
* Maximum Likelihood Estimation (example: mystery coin)
e Continuous random variables

General Steps



Probability vs statistics

Probability

Ber(p = 05) ———>| siven model, predict I:>P(THHTHH)

data




Probability vs statistics

Ber(p =0.5) —

Probability
given model, predict
data

Ber(p =777){—

— P(THHTHH)

Statistics
given data, predict
model

{(—= THHTHH
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Probability: Viewpoint up to Now

Distribution
P(x;8)

Independent
— samples xq, ..., x,
fromP(x ; 0)

6 = known parameter

0 tells us how samples are distributed.
P(x ; 0) viewed as a function of x (fixed 6)
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Statistics: Parameter Estimation - Workflow

Distribution
P(x;8)

Parameter
estimate

Independent
— samples xq, ..., x,, ——

from P(x; 0)

6 = unknown parameter

Algorithm

é/

—

Don’t know how samples are distributed.
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Statistics: Parameter Estimation - Workflow

Parameter
estimate

Independent /
6

Distributi .
'?P)?;ueson — samples x4, ..., x,, — Algorithm ——
’ from P(x; 0)
6 = unknown parameter Don’t know how samples are distributed.

L(x|0) viewed as a function of 6 (fixed x)

Example: L(x|6) = coin flip distribution with unknown 6 = probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

Goal: Estimate 6
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Example

Suppose we have a mystery coin with some probability p of coming up heads. We
flip the coin 8 times, independent of other flips and see the following sequence. of
flips

TTHTHTTH

Given this data, what would you estimate p is?

----------------------------------------------------------------------------------------

Poll: https://pollev.com/ annakarlin185
a. 1/2
' b. 5/8
¢ 3/8
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Agenda

ldea: Estimation
* Maximum Likelihood Estimation (example: mystery coin) @

e Continuous random variables

General Steps
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Likelihood

Say we see outcome HHTHH.

You tell me your best guess
about the value of the unknown
parameter 6 (aka p)is 4/5. Is
there some way that you can
argue “objectively” that this is
the best estimate?
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Likelihood Max Prob of seeing HHTHH

009 l

008

Say we see outcome HHTHH.

007

You tell me your best guess
about the value of the unknown
parameter 6 (akap)is 4/5. Is
there some way that you can
argue “objectively” that this is
the best estimate? 0

0 01 02 03 04 05 06 07 08 09 1

L(HHTHH | 6) = 6*(1 — 6)
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Likelihood of Different Observations (Discrete case)

___________________________________________________________________________________________________________________________________________________________________

 Definition. The likelihood of independent observations X, ...., x,, is

n
L(X1, e, Xn|0) = 1_[ P(x;;0)
i=1

Maximum Likelihood Estimation (MLE). Given data x4, ...., x,, find
0 (“the MLE”) of model such that L(x4, ..., x,,|0) is maximized!
' 6 = argmax L(xq, ..., x,|6)
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Likelihood vs. Probability

A probability function Pr(x ; 8) is a function with input being an
event x for some fixed probability model (w/ param 6).

ZPr(x;G)zl

A likelihood function L(x |0) is a function with input being 6 (the
param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different
questions. We are trying to find the 6 that maximizes likelihood,
thus we are looking for the maximum likelihood estimator.
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—le,ny +tnr=n Goal: estimate 6 = prob. heads.

L(Xl, ....,xn|9) — QnH(l _ H)nT

d
39 L(xq, e, x,|0) =227

While it is not difficult to compute this derivative, we make our
lives easier by observing that we are always taking a derivative
of a product.... 20



Log-Likelihood

We can save some work if we work with the log-likelihood instead of the
likelihood directly.

__________________________________________________________________________________________________________________________________________________________

Definition. The log-likelihood of independent observations
Xqy e, X IS
LL(X1, o, X|0) = In L(Xxq, ..., x,|0)
n n

= lnl_[ P(x;;0) = z InP(x;; 0)
i=1 i=1

Useful log properties
log(ab) = log(a) + log(b)
log(a/b) =log(a) — log(b)
log(a?) = blog(a)

_________
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Example - Coin Flips

Observe: Coin-flip outcomes x4,

—le,ny+nr=n

L(x{,...,x,|0) =0"H(1 — Q)T

In L(xq, ....,x,]|0) =

..., Xn, with ny heads, n tails

Goal: estimate 6 = prob. heads.
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—le,ny+nr=n Goal: estimate 6 = prob. heads.

L(x{,...,x,|0) =0"H(1 — Q)T

In L(x1, ..., x,]|0) =nyglnb + nyIn(1 — 6)

1 1

GG, o, 20|0) =y o =y R

—np——==0

D) =

SOIVe TlH ‘
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Brain Break
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Agenda

ldea: Estimation
* Maximum Likelihood Estimation (example: mystery coin)

e Continuous random variables @&

General Steps
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The Continuous Case

Given n samples x4, ..., x,, from a Gaussian V' (u, 6), estimate
6 = (u,0°)

Density function! (Why?)

26



Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely p?

[i.e., we are given the promise that the variance is one]
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely p?

u=0°7?

Unlikely ...
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n samples x4, ..., x,, € R from Gaussian NV (u, 1). Most likely p?

u =37

Better, but
optimal?
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Example — Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance g% = 1

Goal: estimate 6 expectation

(xl 9)2
ECe o) —H _

log(ab) = log(a) + log(b)
log(a/b) = log(a) — log(b)
log(a?) = blog(a) 31



Example — Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance g% = 1

Goal: estimate 6 expectation

G0y 1 \" 17 _(x-6)?
L(xq,.... xnIH)—l_[ :(\/?T) 1_[6 2

i=1

In2r (x; — 0)?

In L(xq, ..., x,|0) =—n
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Example - Gaussian Parameters Goal: estimate 6= expectation

Normal outcomes x4, ..., x,,, known variance ¢% = 1
n

In2n x; — 0)°
In L(x1, ..., x,]10) = —n 2 _Z( 12 )

=1
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Example - Gaussian Parameters Goal: estimate 6= expectation

Normal outcomes x4, ..., x,,, known variance ¢% = 1

B In2r (x; — )*
In L(x1, ..., x,|0) = —n > —Z >
Note: =52 =22 (5, - 0) - (-1) = 6 —x,
a n n
%ln,ﬁ(xl, ey X0 |0) =Z(xl- —0) = in —nf =0
i=1 i=1

Y7 Inother words, MLE is the
. sample mean of the data.
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Next: n samples x5, ..., x,, € R from Gaussian V' (i, 0%). Most likely 1 and

o

25

05

03

02

01
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Agenda

ldea: Estimation
* Maximum Likelihood Estimation (example: mystery coin)

e Continuous random variables

General Steps @&
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General Recipe

1. Input Given n iid samples x4, ..., x,, from parametric model with
parameters 0.

2. Likelihood Define your likelihood L(x4, ...., x,|0).
— Fordiscrete  L(xq,....,x,10) =112 Pr(x; ; 6)
— For continuous L(xq,....,x,|0) = [, f(x;; 0)

3. Log Compute In L(xq, ....,x,|0)

4. Differentiate Compute a_ae In L(xq,....,x,|0)
5. Solve for 6 by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.
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Another example of continuous law of total probability

X and Y are independent, where X has CDF Fx(x) and Y has
pdf fy(y). What is P(X > 5Y)?

_____________________________________________________________________________________________________________________________________________________________________

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,

Pr[E] =j PrlE|Y =yl fy(y) dy



