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Feedback

I’m going too fast for some of you.
— I’ll pause more to give you a chance to ask questions.
— You ask more questions.
— Read the section or watch videos before class.
— Come to next class with questions about previous class.
» “Examples in class are too complex. ¢
— | can’t seem to please all of the people all of the time!
* Which material is in the book?
— Pretty much everything.
» Grades/quizzes/etc — don’t worry!
* ‘“There needs to be more commenting on the python code to explain new
syntax, like for calling objects from other classes.”

— Please send a message on edstem pointing out places where you think more
comments are needed and we can try to add some. [For both past and future psets]



Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let E be an event and let Y be a discrete
- random variable that takes values {1,2, ..., n}. Then,

Pr(E] = z Pr(E|Y =i]Pr(Y =1i)
=il

Law of Total Expectation. Let X be a random variable and let Y be a

~ discrete random variable that takes values {1,2, ..., n}. Then,
| n




Law of Total Probability

| - Law of Total Probability (discrete). Let E be an event and let Y be a
dlscrete random variable that takes values {1,2, ..., n}. Then,

zPr [E|Y =i]Pr(Y =1i)

.....................................................................................................................................................................

Law of Total Probability (cont). Let £ be an event and let Y be a
- continuous random variable. Then,
; —//-_

Pr[E] =j PrlElY =yl fy(y) dy e
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Example:[Number of accidents a random persbn has in a year

is Poisson where Y itself is a random variable. What is the

probabilityhat a random person has two accidents? e

Discrete example: Continuous example:
Y is Binomial (100, 0.3). Y is exponential with parameter 1
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Law of Total Expectation

| - Law of Total Expectation (discrete. Let X be a random variable and Y
be a discrete random varlable that takes values {1,2, ..., n}. Then,

zE [X|Y = i|RE(Y =)

1 - Law of Total Expectation (cont). Let X be a random variable and let Y
be a continuous random variable. Then,

FXl = | EXIY = v G
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Example: —

X is discrete uniform or\iOi“\;lO }.‘ X Js continuous uniform on
Y is discrete uniform on {0, .. X}. O,ﬁ).}Yﬁi_s continuous uniform
What is E(Y) ? = 6n (0, X). Whatis E(Y) ?
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Agenda

|dea: Estimation @
Maximum Likelihood Estimation (example: mystery coin)

Continuous random variables

General Steps



Probability vs statistics w

Probabilit
given model, p‘rledict I:> P(THHTHH)
data A —




Probability vs statistics w

Probability

Ber(p = 05) | given model, predict I:>P(THHTHH)

data

N

Statistics
777) == SRS pred\iA\ <:‘THHTHH

—

model
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6 = ww%ﬂt\w
Probability: Viewpoint up to Now Qo)
R B
= O

Independent
samples x4, ..., x,
from P(x ; 0)

Distribution
P(x; 0)

6 = known parameter

tells us how samples are distributed.
P(x ; 0) viewed as a function of x (fixed 9)
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Statistics: Parameter Estimation - Workflow

Distribution
P(x; 0)

T
|

6 = unknown p%ameter

Independent

Samp

from P(x; 0)

Algorithm

Parameter
estimate

Don’t know how samples are distributed.
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Statistics: Parameter Estimation - Workflow

Parameter
estimate
Distribution IelgpEelee . A
P(x; 0) — samples x4, ...,x, — Algorithm ——— @
’ from P(x; 0)
6 = unknown parameter Don’t know how samples are distributed.

L(x|6) viewed as a function of 8 (fixed x)

Example: L(x|6) = coin flip distribution with unknown 6 = probability of heads
—

Observation: HTTHHHTHTHTTTTHTHTTTTTHT

cobamant ) o Sl B



Example

Suppose we have a mystery coin with some probability p of coming up heads. We

flip the coin 8 times, independent of other flips and see the following sequence. of
flips

TTHTHTTH 3 Bs
Given this data, what would you estimate p is? % &\\V%Q-
 Poll: https://pollev.com/ annakarlin185 )
a 1/2
' b. 5/8
¢ 3
d 1/4
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Agenda

|dea: Estimation
Maximum Likelihood Estimation (example: mystery coin) @

Continuous random variables

General Steps
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Likelih
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Say we see outcome\HHTHH.
mat Blely do hogpers

You tell me your best guess Pli-6) AwE) 0 ?(‘&1‘%@@’)

about the value of the unknown

parameter 6, (aka p)is 4/5.1s (&(\—N\’\m\é ,@ \&\6 -&

there some way that you can
argue “objectively” that this is Y J
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Likelihood Max Prob of seeing HHTHH

009 l

007

Say we see outcome HHTHH.
You tell me your best guess
about the value of the unknown
parameter 6 (aka p)is 4/5. Is
there some way that you can
argue “objectively” that this is
the best estimate? 0

HHTHH lg\) 6 -0)

Wdned b 9 s avieny
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aximum Likelihood Estimation (MLE). Given data x, ...., x,, find

{“the MLE”) of model such that L(xq, ...., x, ) is maximized!
— 0 = ar : . Xn|0)

Usually: Solv oL, 'é'é’x"w)\: ;!ora & L(xl’a'é' i ) 0 [+check it’s a max!] "

Ay '




Likelihood vs. Probability

A probability function Pr(x ; 0) is a function with input being an
event| x for some fixed probability model (w/ param 0).

ZPr(x;H)zl

A likelihood function L(¥ |0) is a function with input being 6 (the

param of the prob. Modél) & some fixed dataset ,?‘\
=SS
&

\[onia\\(*(
These notions are very closely connected, but answer different
questions. We are trying to find the 6 that maximizes likelihood,
thus we are looking for the maximum likelihood estimator.
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Example - Coin Flips

Observe: Coin-flip outcomes \, With n; heads, n; tails
- o
Goal: estimate 6 = prob. heads.

Cmmm— T ——

—le,ny+ny=n

——

L(Xq, ..., x,|0) = 0™H(1 — O)"T
e ——,

9]

— L(xq, .e.,x,|0) 2727

a0

While it is not difficult to compute this derivative, we make our
lives easier by observing that we are always taking a derivative
of a product.... 20



Log-Likelihood

We can save some work if we work with the log-likelihood instead of the
likelihood directly.

Definition. The log-likelihood of independent observations
X1, e, X IS
‘ LL(X, oo, X |0) = 1In L(Xq, ..., x,|0)

n n

= In 1_[ P(x;; 0) = z InP(x;; )
i=1 i=1

Useful log properties
log(ab) = log(a) + log(b)
log(a/b) = log(a) —log(b)
log(ab) = blog(a) ’



Example - Coin Flips

Observe: Coin-flip outcomes x4,

—le,ny+ny=n

L0y, o, %,|0) = O™ (1 — 6)7T

In L(xq, ..., x,|0) =

.., X, With ny heads, n; tails

Goal: estimate 6 = prob. heads.
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Example - Coin Flips

Observe: Coin-flip outcomes x4, ..., x,,, with ny heads, n; tails

—le,ny +nr=n Goal: estimate 0 = prob. heads.

L(Xqg, ., %,|0) = O7H(1 — )T

In L(xq,....,x,|0) = nyInb + nyIn(1 — )

1 1

%lnﬁ(xll"--;xnle):nH°5_nT'T9 poecesessssssssssosescoaEammRmEas i

1
SoIvenH-g—nT-—zO
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Brain Break

24



Agenda

|dea: Estimation
Maximum Likelihood Estimation (example: mystery coin)

Continuous random variables @

General Steps
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The Continuous Case

Given n samples x4, ..., x,, from a Gaussian V' (u, 02), estimate
6 = (uo°)

Definition. The likelihood of independent observations x4, ...., x,, is

L(xy, o) 2]0) = nf(xi; 0
i=1

------------------------------------------------------------------------------------------------ ——

Density function! (Why?)
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Why density?

* Density # probability, but:

— For maximizing likelihood, we really only care about relative
likelihoods, and density captures that

— has desired property that likelihood increases with better fit to the
model

27



n samples x4, ..., x,, € R from Gaussian V' (u, 1). Most likely p?

[i.e., we are given the promise that the variance is one]

| I | | e | Sel sue | sesk

! | ! ! s AN e I T

-4 -3 -2 -1 0 1 2 3 4 5

X
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n samples x4, ..., x,, € R from Gaussian V' (u, 1). Most likely p?

u=0?
Unlikely ...
| | sesk | ¢
! T o
-4 -3 -2 -1 0 1 2 3 4 5 6

29



n samples x4, ..., x,, € R from Gaussian V' (u, 1). Most likely p?

u=37?

Better, but
optimal?

30



Example — Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance 6% = 1

Goal: estimate 6 expectation

1 (xi=6)?
L(xl,....,xn|9) — — € 2 =

log(ab) = log(a) + log(b)
log(a/b) = log(a) — log(b)
log(ab) = blog(a) 31



Example — Gaussian Parameters

Normal outcomes x4, ..., x,,, known variance 6% = 1

Goal: estimate 6 expectation

( - 1 (x-6)? 1\"1
L(xX1, oo, X |0 =1_[—e 7 =(—> 1_[8
T vem V2m 2

32



Example - Gaussian Parameters Goal: estimate 0= expectation

Normal outcomes x4, ..., x,,, known variance ¢ = 1

In2r < (x; — 0)?

lnL(xl,....,xnle) =—n — v 77
2 Z | 2

=

33



Example - Gaussian Parameters Goal: estimate 0= expectation

Normal outcomes x4, ..., x,,, known variance ¢ = 1

n
In2m x; — 0)?
InL(xq, ..., x,|0) = —n —zu

2 L 2
Note: aae (x; 29) 2 (x;—0)-(—1) =0 — x;
a n
aHlnL(xl,... , X |0) = Z(xl—é?) —le—nﬁ =0
i=1 i=1

Y"x; | Inotherwords, MLE is the
. sample mean of the data.

...............................
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Next: n samples x;, ..., x,, € R from Gaussian V' (1, 02). Most likely u and
o

2>
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Agenda

|dea: Estimation
Maximum Likelihood Estimation (example: mystery coin)

Continuous random variables

General Steps @&
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General Recipe

1. Input Given n iid samples x4, ..., x,, from parametric model with
parameters 6.

2. Likelihood Define your likelihood L(x4, ....,x,,|0).
— Fordiscrete  L(xq,....,x,|0) = [1}2; Pr(x; ; 6)
— For continuous L(xq, ....,x,|0) =iz, f(x;;0)
3.Log Compute In L(x4, ....,x,|60)
4. Differentiate Compute a% In L(xq,....,%,]|0)

5. Solve for § by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a
maximum, but we won’t ask you to do that in CSE 312.
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Another example of continuous law of total probability

X and Y are independent, where X has CDF Fx(x) and Y has
pdf fy(y). What is P(X > 5Y)?

.....................................................................................................................................................................

Law of Total Probability (cont). Let E be an event and let Y be a continuous random variable. Then,
+00
PriE] = | PrEIY = ] ;0 dy



