CSE 312 Foundations of Computing II

Lecture 22: Loose Ends and Maximum Likelihood Estimation

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

1

Feedback

- I'm going too fast for some of you.
 - I'll pause more to give you a chance to ask questions.
 - You ask more questions.
 - Read the section or watch videos before class.
 - Come to next class with questions about previous class.
- "Examples in class are too complex."
 - I can't seem to please all of the people all of the time!
- Which material is in the book?
 - Pretty much everything.
- Grades/quizzes/etc don't worry!
- "There needs to be more commenting on the python code to explain new syntax, like for calling objects from other classes."
 - Please send a message on edstem pointing out places where you think more comments are needed and we can try to add some. [For both past and future psets]

Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let <u>E</u> be an event and let <u>Y</u> be a discrete random variable that takes values $\{1, 2, ..., n\}$. Then,

$$\Pr[E] = \sum_{i=1}^{n} \Pr[E|Y=i] \Pr(Y=i)$$

Law of Total Probability

Law of Total Probability (discrete). Let E be an event and let Y be a discrete random variable that takes values $\{1, 2, ..., n\}$. Then, $\Pr[E] = \sum_{i=1}^{n} \Pr[E|Y=i]\Pr(Y=i)$

Law of Total Probability (cont). Let *E* be an event and let *Y* be a continuous random variable. Then,

$$\Pr[E] = \int_{-\infty}^{+\infty} \Pr[E|Y = y] f_Y(y) \, dy$$

$$\bigvee_{e \in yy} f_{yy}(y) \, dy$$

X ~ Poisson (10)

Example: Number of accidents a random person has in a year is Poisson(Y) where Y itself is a random variable. What is the probability that a random person has two accidents?

Discrete example:

Continuous example:

Y is exponential with parameter 1

Pr(4-2

Law of Total Expectation

Law of Total Expectation (discrete. Let *X* be a random variable and *Y* be a discrete random variable that takes values $\{1, 2, ..., n\}$. Then,

$$E[X] = \sum_{i=1}^{N} E[X|Y=i] \Pr(Y=i)$$

Law of Total Expectation (cont). Let X be a random variable and let Y be a continuous random variable. Then, $E[X] = \int_{-\infty}^{+\infty} E[X|Y = y]f_Y(y) \, dy$

Agenda

- Idea: Estimation <
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

param q interest donthew

 $\hat{\theta}$ tells us how samples are distributed. $\mathbb{P}(x; \hat{\theta})$ viewed as a function of x (fixed θ)

Statistics: Parameter Estimation – Workflow

Parameter estimate Distribution $\mathbb{P}(x;\theta)$ Independent samples $x_1, ..., x_n$ Algorithm $\hat{\theta}$ $\theta = \underline{unknown \ parameter}$ Don't know how samples are distributed. $\mathcal{L}(x|\theta)$ viewed as a function of θ (fixed x) Example: $\mathcal{L}(x|\theta) = \text{coin flip distribution with unknown } \theta = \text{probability of heads}$

Statistics: Parameter Estimation – Workflow

Goal Estimate θ

Observation: HTTHHHTHTHTHTHTHTHTHTHT

Example

Suppose we have a mystery coin with some probability p of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence. of flips

TTHTHTTH

Given this data, what would you estimate <i>p</i> is?
Poll: https://pollev.com/ annakarlin185
<i>a.</i> 1/2 <i>b.</i> 5/8
<i>b.</i> 5/8
<u>c. 3/8</u>
<i>c.</i> 3/8 <i>d.</i> 1/4

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

For what param value is antione HHTTHH to hop pen most P(T:0) P(4,0) P(H.S) P(H.S) that maximizes this th. Find G $46^{3} - 56^{4} = 6^{3}(4 - 56)$ 16

Likelihood

Say we see outcome HHTHH.

You tell me your best guess about the value of the unknown parameter θ (aka p) is 4/5. Is there some way that you can argue "objectively" that this is the best estimate?

04(1 0)

$$L(HHTHH \theta) = \theta^{4}(1-\theta)$$

$$Likelihood fn: prob deseug this ontong
$$Jore param was = 17$$$$

-> Ber [0]

P(H;e) = eP(T;e) = (-e)

Likelihood of Different Observations

(Discrete case)

Likelihood vs. Probability w^{n} know p_{m} A probability function $Pr(x; \theta)$ is a function with input being an event x for some fixed probability model (w/ param θ). $\sum_{x} Pr(x; \theta) = 1$ A likelihood function $\mathcal{L}(x \mid \theta)$ is a function with input being θ (the param of the prob. Model) for some fixed dataset x.

These notions are very closely connected, but answer different questions. We are trying to find the θ that maximizes likelihood, thus we are looking for the **maximum likelihood estimator**.

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product....

Log-Likelihood

We can save some work if we work with the **log-likelihood** instead of the likelihood directly.

Definition. The **log-likelihood** of independent observations x_1, \dots, x_n is $\mathcal{LL}(x_1, \dots, x_n | \theta) = \ln \mathcal{L}(x_1, \dots, x_n | \theta)$ $= \ln \prod_{i=1}^n \mathbb{P}(x_i; \theta) = \sum_{i=1}^n \ln \mathbb{P}(x_i; \theta)$

Useful log properties

log(ab) = log(a) + log(b) log(a/b) = log(a) - log(b)log(a^b) = blog(a)

21

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - I.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

 $\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$ $\ln \mathcal{L}(x_1, \dots, x_n | \theta) =$

Example – Coin Flips

Observe: Coin-flip outcomes $x_1, ..., x_n$, with n_H heads, n_T tails - I.e., $n_H + n_T = n$ Goal: estimate θ = prob. heads.

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \ln \theta + n_T \ln(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta}$$

$$\hat{\theta} = \frac{n_H}{n}$$
Solve $n_H \cdot \frac{1}{\theta} - n_T \cdot \frac{1}{1 - \theta} = 0$

Brain Break

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps

The Continuous Case

Given *n* samples $x_1, ..., x_n$ from a Gaussian $\mathcal{N}(\mu, \sigma^2)$, estimate $\theta = (\mu, \sigma^2)$

Why density?

- Density ≠ probability, but:
 - For maximizing likelihood, we really only care about relative likelihoods, and density captures that
 - has desired property that likelihood increases with better fit to the model

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ? [i.e., we are given the <u>promise</u> that the variance is one]

n samples $x_1, ..., x_n \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. <u>Most likely</u> μ ?

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

Goal: estimate θ expectation

$$\mathcal{L}(x_1, ..., x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \theta)^2}{2}} =$$

$$log(ab) = log(a) + log(b)$$

$$log(a/b) = log(a) - log(b)$$

$$log(ab) = blog(a)$$

31

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$ Goal: estimate θ expectation

$$\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \theta)^2}{2}} = \left(\frac{1}{\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{\frac{(x_i - \theta)^2}{2}}$$
$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

32

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, ..., x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^n \frac{(x_i - \theta)^2}{2}$$

Goal: estimate θ = expectation

Normal outcomes $x_1, ..., x_n$, known variance $\sigma^2 = 1$

$$\ln \mathcal{L}(x_1, \dots, x_n | \theta) = -n \frac{\ln 2\pi}{2} - \sum_{i=1}^{n} \frac{(x_i - \theta)^2}{2}$$

Note: $\frac{\partial}{\partial \theta} \frac{(x_i - \theta)^2}{2} = \frac{1}{2} \cdot 2 \cdot (x_i - \theta) \cdot (-1) = \theta - x_i$
 $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta) = \sum_{i=1}^n (x_i - \theta) = \sum_{i=1}^n x_i - n\theta = 0$

In other words, MLE is the sample mean of the data.

34

Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps 🗨

General Recipe

- 1. **Input** Given *n* iid samples $x_1, ..., x_n$ from parametric model with parameters θ .
- 2. Likelihood Define your likelihood $\mathcal{L}(x_1, \dots, x_n | \theta)$.
 - For discrete $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \Pr(x_i; \theta)$
 - For continuous $\mathcal{L}(x_1, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 3. Log Compute $\ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}(x_1, \dots, x_n | \theta)$
- 5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

Another example of continuous law of total probability

X and Y are independent, where X has CDF $F_X(x)$ and Y has pdf $f_Y(y)$. What is P(X > 5Y)?

