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Agenda

* Continuous joint distributions a
* Conditional Expectation and Law of Total Expectation
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* Suppose that the surface of a disk is a circle with area R centered at
the origin and that there is a single point imperfection at a location
with is uniformly distributed across the surface of the disk. Let X and
Y be the x and y coordinates of the imperfection (random variables)
and let Z be the distance of the imperfection from the origin.

— What is their joint density f(x,y)?
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* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let Xand Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin.

— What is the range of X & Y and the marginal density of X and of Y?
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* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let Xand Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin.

— Are Xand Y independent?
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* Suppose that the surface of a disk is a circle with area R centered at the origin
and that there is a single point imperfection at a location with is uniformly
distributed across the surface of the disk. Let Xand Y be the x and y coordinates
of the imperfection (random variables) and let Z be the distance of the
imperfection from the origin.

— Whatis E(Z)?
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All of this generalizes to more than 2 random variables

Discrete

Continuous

Joint PMF/PDF

rxy(z,y)

=PX=¢Y =3)

fxy(z,y) #P(X =z,Y =y)

Joint range/support

Qxy {(x,y)EQxey:px,y(x,y)>0} ( )GQXny fxy(z,y) >0}

Joint CDF Fxy (2,Y) = Y icpscy PXY (L 5) Fxy (z,y) = f I? . fxy (t,s)dsdt
Normalization nypx y(z,y) =1 f o fxy (x y) drdy =1

Marginal PMF/PDF px(z Z px.y(z,y) (z) = foooo fxy(z y)dy

Expectation [g(X V) =>,,9@ypxy(y) | EgX,Y)] = [0 J° 9(z,y) fxy(z,y)dedy







Agenda

* Continuous joint distributions
* Conditional Expectation and Law of Total Expectation
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Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
- expectation of X given event A is

 Linearity of expectation still applies here
ElaX + bY + c| Al = aE[X | A] + bE[Y | A] + ¢
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Conditional Expectation

Definition. Let X be a discrete random variable then the conditional
- expectation of X giveneventY = yis

E[X|Y =y]= z xPrlX =x|Y =y)

 Linearity of expectation still applies here

ElaX + bY +c|Y =y]=aE[X|Y =y]+DE|Y |Y =y] +¢C N



Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable
~and let events A4, ..., A, partition the sample space. Then,

F[X] = ) EIXIAIPr(4))
=1
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Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

z x Pr(X = x)

x €Q(X)

— Z xz Pr(X = x |4;)Pr(4;) (by LTP)

xEQ(X) i=1

E|X]

Z Pr(4; )Z XxPr(X = x | 4)] (change order of sums)
x€eQ(X)

z (def of cond. expect.)
Z Pr(A;) E[X|A;]
i=1
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Law of Total Expectation

Law of Total Expectation (random variable version). Let X be a
- random variable and Y be a discrete random variable. Then,

EIXI= ) EXIY = ylPr(y = y)
y €Q(Y)
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Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone
gave us Y ~ Poi(5) fair coins and we wanted to compute the expected number of

heads X from flipping those coins.
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Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i
your computer will fail with probability p (independently of other steps). Let X be
the number of steps it takes your computer to fail. What is E[X]|?
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Elevator rides

The number of people who enter an elevator on the ground floor is a
Poisson random variable with mean 10. If there are N floors above the
ground floor, and if each person is equally likely to get off at any one of
the N floors, independently of where others get off, compute the
expected number of stops the elevator will make before discharging all
the passengers.
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Reference Sheet (with continuous RVs)

Discrete Continuous
Joint PMF/PDF Py =PX =xY =) fry(x,) # PX = x,Y =)
. X ry
Joint CDF Fy(y) = Y Dry(6:5) FoG = [ | fultsdsd
t<x s<y =00 =00
Normalization > by =1 [ [ fvtnixay=1
X y —00 v —00
Marginal _ *
PMF% PDE px(x) = ;px,y(x, y) fr(x) = f_ } fry(x,y)dy
Expectation Elg(X,Y)] = Zzg(x, Mpxy(xy) | E[g(X,Y)] = f j 90, ) fry(x, y)dxdy
x v —00 v —00
Conditional D1y (e |y) = Pxy(X,y) (x| y) = fxy(x,¥)
PME/PDF XI¥ Dy (¥) Iy fr )
Conditional ] — %
Expectation EIX|Y=y]= prxw(x | y) E[X|Y=y]= f_oofoIY(x | y)dx
Independence Vx,y, px,y(x» y) = px(X)py(¥) vx,y, fx,y(x» V) = () fy ()







