CSE 312 # Foundations of Computing II **Lecture 20:** Joint Distributions #### Anna R. Karlin Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself © ## Hash functions – few more comments # Agenda - Joint Distributions - Cartesian Products - Joint PMFs/PDFs/CDFs and Joint Range - Marginal Distributions, etc. ### Why joint distributions? - Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you. - Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms. - Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop. #### **Review Cartesian Product** **Definition.** Let *A* and *B* be sets. The **Cartesian product** of *A* and *B* is denoted $$A \times B = \{(a, b) : a \in A, b \in B\}$$ #### Example. $$\{1,2,3\}\times\{4,5\} = \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$$ If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$. The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^2) ### Joint PMFs and Joint Range **Definition.** Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is $$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$ **Definition.** The **joint range** of $p_{X,Y}$ is $$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$ Note that $$\sum_{(s,t)\in\Omega(X,Y)} p_{X,Y}(s,t) = 1$$ Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. $$\Omega(X) = \{1,2,3,4\} \text{ and } \Omega(Y) = \{1,2,3,4\}$$ In this problem, the joint PMF is $$p_{X,Y}(x,y) = \begin{cases} 1/16, & x,y \in \Omega(X,Y) \\ 0, & \text{otherwise} \end{cases}$$ | X\Y | 1 | 2 | 3 | 4 | |-----|------|------|------|------| | 1 | 1/16 | 1/16 | 1/16 | 1/16 | | 2 | 1/16 | 1/16 | 1/16 | 1/16 | | 3 | 1/16 | 1/16 | 1/16 | 1/16 | | 4 | 1/16 | 1/16 | 1/16 | 1/16 | and the joint range is (since all combinations have non-zero probability) $$\Omega(X,Y) = \Omega(X) \times \Omega(Y)$$ ### Independence **Definition.** Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is $$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$ **Definition.** The **joint range** of $p_{X,Y}$ is $$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$ **Definition.** *X* and *Y* are **independent** iff for all *a*, *b* $$Pr(X = a, Y = b) = Pr(X = a) \cdot Pr(Y = b)$$ Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ $$\Omega(U) = \{1,2,3,4\} \text{ and } \Omega(W) = \{1,2,3,4\}$$ $$\Omega(U, W) = \{(u, w) \in \Omega(U) \times \Omega(W) : u \le w \} \ne \Omega(U) \times \Omega(W)$$ #### Poll: What is $p_{U,W}(1,3) = \Pr(U = 1, W = 3)$? - *a.* 1/16 - *b.* 2/16 - *c.* 1/2 - d. Not sure 2 3 4 2 3 U\W https://pollev.com/annakarlin185 Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ $$\Omega(U) = \{1,2,3,4\} \text{ and } \Omega(W) = \{1,2,3,4\}$$ $$\Omega(U, W) = \{(u, w) \in \Omega(U) \times \Omega(W) : u \le w \} \ne \Omega(U) \times \Omega(W)$$ The joint PMF $$p_{U,W}(u, w) = Pr(U = u, W = w)$$ is $$p_{U,W}(u,w) = \begin{cases} 2/16, & (u,w) \in \Omega(U) \times \Omega(W) \text{ where } w > u \\ 1/16, & (u,w) \in \Omega(U) \times \Omega(W) \text{ where } w = u \\ 0, & \text{otherwise} \end{cases}$$ | U\W | 1 | 2 | 3 | 4 | |-----|------|------|------|------| | 1 | 1/16 | 2/16 | 2/16 | 2/16 | | 2 | 0 | 1/16 | 2/16 | 2/16 | | 3 | 0 | 0 | 1/16 | 2/16 | | 4 | 0 | 0 | 0 | 1/16 | Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ Suppose we didn't know how to compute $\Pr(U = u)$ directly. Can we figure it out if we know $p_{U,W}(u,w)$? $$p_{U}(u) = \begin{cases} u = 1 \\ u = 2 \\ u = 3 \\ u = 4 \end{cases}$$ | U\W | 1 | 2 | 3 | 4 | |-----|------|------|------|------| | 1 | 1/16 | 2/16 | 2/16 | 2/16 | | 2 | 0 | 1/16 | 2/16 | 2/16 | | 3 | 0 | 0 | 1/16 | 2/16 | | 4 | 0 | 0 | 0 | 1/16 | Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$ Suppose we didn't know how to compute $\Pr(U = u)$ directly. Can we figure it out if we know $p_{U,W}(u,w)$? $$p_U(u) = \begin{cases} 7/16, & u = 1\\ 5/16, & u = 2\\ 3/16, & u = 3\\ 1/16, & u = 4 \end{cases}$$ | U\W | 1 | 2 | 3 | 4 | |-----|------|------|------|------| | 1 | 1/16 | 2/16 | 2/16 | 2/16 | | 2 | 0 | 1/16 | 2/16 | 2/16 | | 3 | 0 | 0 | 1/16 | 2/16 | | 4 | 0 | 0 | 0 | 1/16 | ## **Marginal PMF** **Definition.** Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The marginal PMF of X $$p_X(a) = \sum_{b \in \Omega(Y)} p_{X,Y}(a,b)$$ Similarly, $p_Y(b) = \sum_{a \in \Omega(X)} p_{X,Y}(a,b)$ Visual (for continuous X and Y) #### **Joint Expectation** **Definition.** Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The **expectation** of some function g(x,y) with inputs X and Y $$E[g(X,Y)] = \sum_{a \in \Omega(X)} \sum_{b \in \Omega(Y)} g(a,b) p_{X,Y}(a,b)$$ ## Another example. Suppose the table below gives us the joint pmf of X and Y. What is the marginal pmf of X? What is the marginal pmf of Y? Are X and Y independent? What is E(XY)? | X\Y | 1 | 2 | |-----|-----|-----| | 1 | 0.4 | 0.1 | | 2 | 0.1 | 0.4 | - Suppose the number of requests Z to a particular web server per hour is Poisson(λ). And that the request comes from within the US with probability p. - Let X be the number of requests per hour from the US and let Y be the number of requests per hour from outside the US. What is the joint pmf of X and Y? Are they independent? | | Discrete | Continuous | |---------------------|---|--| | Joint PMF/PDF | $p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$ | $f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$ | | Joint range/support | | | | $\Omega_{X,Y}$ | $\{(x,y) \in \Omega_X \times \Omega_Y : p_{X,Y}(x,y) > 0\}$ | | | Joint CDF | $F_{X,Y}(x,y) = \sum_{t \le x,s \le y} p_{X,Y}(t,s)$ | $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$ | | Normalization | $\sum_{x,y} p_{X,Y}(x,y) = 1$ | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$ | | Marginal PMF/PDF | $p_X(x) = \sum_{y} p_{X,Y}(x,y)$ | $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$ | | Expectation | $\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$ | $\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$ | ## Independence (continuous random variables) **Definition.** Let *X* and *Y* be continuous random variables. The **joint pdf** of *X* and *Y* is $$f_{X,Y}(a,b) \neq \Pr(X=a,Y=b)$$ **Definition.** The **joint range** of $p_{X,Y}$ is $$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$ **Definition.** *X* and *Y* are **independent** iff for all *a*, *b* $$f_{X,Y}(a,b) = f_X(a) \cdot f_Y(b)$$ - Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin. - What is their joint density f(x,y)? - Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin. - What is the range of X & Y and the marginal density of X and of Y? #### Poll: What is Ω_X ? a. $$[-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}]$$ b. $$[-R, R]$$ b. $$[-R, R]$$ c. $[-\sqrt{R^2 - y^2}, \sqrt{R^2 - y^2}]$ d. Not sure - Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin. - Are X and Y independent? #### Poll: Are X and Y independent? - a. yes - b. no • Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin. - What is E(Z)? # All of this generalizes to more than 2 random variables | | Discrete | Continuous | |---------------------|---|--| | Joint PMF/PDF | $p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$ | $f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$ | | Joint range/support | | | | $\Omega_{X,Y}$ | $\{(x,y) \in \Omega_X \times \Omega_Y : p_{X,Y}(x,y) > 0\}$ | $\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$ | | Joint CDF | $F_{X,Y}(x,y) = \sum_{t \le x,s \le y} p_{X,Y}(t,s)$ | $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$ | | Normalization | $\sum_{x,y} p_{X,Y}(x,y) = 1$ | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$ | | Marginal PMF/PDF | $p_X(x) = \sum_{y} p_{X,Y}(x,y)$ | $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$ | | Expectation | $\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$ | $\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$ | # **Brain Break**