CSE 312

Foundations of Computing II

Lecture 20: Joint Distributions

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

h: U -> {0,1,-,m-13

Hash functions – few more comments Approach: define a family X of hash his sit. (a) if we pick hash for he) (u.ar.) at will below well

Axe O Aiefoinming $\text{Br}_{\text{he}}(\sqrt{x}) = \frac{1}{x}$

Axiden A: ? = {0, 2, m-1} bush (p(x)=1) plane

b) YxeU, The) (h(x) is efficiently computable

A class of hash firs that socisfies this

[U]= W N × p prine #

hap (x)= (ax+b) mod p mod m

1 = a = p-1, 0 = b = p-1?

Agenda

- - Cartesian Products
 - Joint PMFs/PDFs/CDFs and Joint Range
 - Marginal Distributions, etc.

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop.

Review Cartesian Product

Definition. Let \underline{A} and \underline{B} be sets. The **Cartesian product** of \underline{A} and \underline{B} is denoted

$$\underline{A \times B} = \{(\underline{a}, \underline{b}) : \underline{a} \in \underline{A}, \underline{b} \in \underline{B}\}$$

Example.

$$\{1,2,3\} \times \{4,5\} = \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$$

If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^2)

Joint PMFs and Joint Range

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is

$$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$

Note that

$$\sum_{(s,t)\in\Omega(X,Y)} p_{X,Y}(s,t) = 1$$

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.

$$\Omega(X) = \{1,2,3,4\}$$
 and $\Omega(Y) = \{1,2,3,4\}$

In this problem, the joint PMF is

$$p_{X,Y}(x,y) = \begin{cases} \frac{1}{16}, & x,y \in \Omega(X,Y) \\ 0, & \text{otherwise} \end{cases}$$

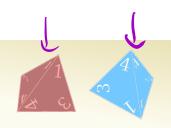
X\Y	1	2	3	4
1	1/16	1/16	1/16	1/16
2	1/16	1/16	1/16	1/16
3	1/16	1/16	1/16	1/16
4	1/16	1/16	1/16	1/16

and the joint range is (since all combinations have non-zero probability)

$$\Omega(X,Y) = \Omega(X) \times \Omega(Y)$$

Independence

Definition. Let *X* and *Y* be discrete random variables. The **Joint PMF** of *X* and *Y* is


$$p_{X,Y}(a,b) = \Pr(X = a, Y = b)$$

Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$

Definition. X and Y are independent iff for all a, b

$$\Pr(X = a, Y = b) = \Pr(X = a) \cdot \Pr(Y = b)$$

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$$\Omega(U) = \{1,2,3,4\}$$
 and $\Omega(W) = \{1,2,3,4\}$

$$\Omega(U, W) = \{(u, w) \in \Omega(U) \times \Omega(W) : u \le w \} \neq \Omega(U) \times \Omega(W)$$

Poll:

What is $p_{U,W}(1,3) = \Pr(U = 1, W = 3)$?

- *a.* 1/16
- b. 2/16
- c. 1/2
- d. Not sure

https://pollev.com/annakarlin185

U\W	1	2	3	4
1				
2				
3				
4				

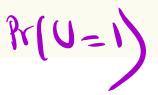
Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

$$\Omega(U) = \{1,2,3,4\}$$
 and $\Omega(W) = \{1,2,3,4\}$

$$\Omega(U, W) = \{(u, w) \in \Omega(U) \times \Omega(W) : u \le w \} \neq \Omega(U) \times \Omega(W)$$

The joint PMF $p_{U,W}(u, w) = Pr(U = u, W = w)$ is

$$p_{U,W}(u,w) = \begin{cases} 2/16, & (u,w) \in \Omega(U) \times \Omega(W) \text{ where } w > u \\ 1/16, & (u,w) \in \Omega(U) \times \Omega(W) \text{ where } w = u \\ 0, & \text{otherwise} \end{cases}$$


U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
(3)	0	0	1/16	2/16
4	0	0	0	1/16

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Suppose we didn't know how to compute $\Pr(U = u)$ directly. Can we figure it out if we know $p_{U,W}(u,w)$?

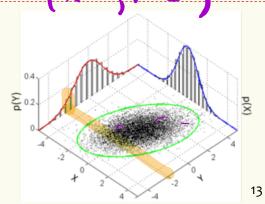
$$p_{U}(u) = \begin{cases} u = 1 \\ u = 2 \\ u = 3 \\ u = 4 \end{cases}$$

U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U = \min(X, Y)$ and $W = \max(X, Y)$

Suppose we didn't know how to compute Pr(U = u) directly. Can we figure it out if we know $p_{U,W}(u,w)$?

$$p_U(u) = \begin{cases} 7/16, & u = 1\\ 5/16, & u = 2\\ 3/16, & u = 3\\ 1/16, & u = 4 \end{cases}$$


U\W	1	2	3	4
1	1/16	2/16	2/16	2/16
2	0	1/16	2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The marginal PMF of X

$$p_X(a) = \sum_{b \in \Omega(Y)} p_{X,Y}(a,b)$$

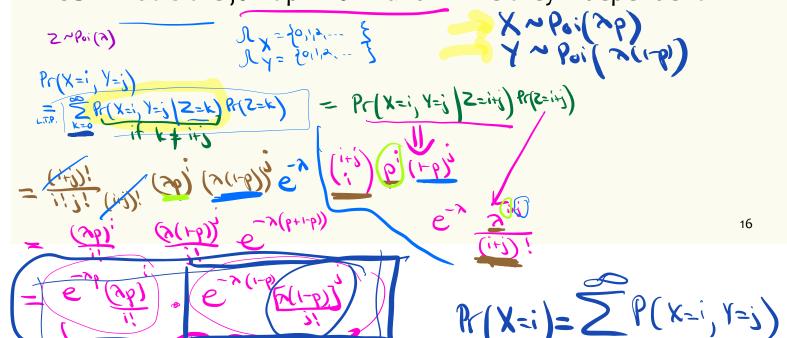
Similarly,
$$p_Y(b) = \sum_{a \in \Omega(X)} p_{X,Y}(a,b)$$

Visual (for continuous *X* and *Y*)

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X,Y}(a,b)$ their joint PMF. The **expectation** of some function g(x,y) with inputs X and Y

$$E[g(X,Y)] = \sum_{a \in \Omega(X)} \sum_{b \in \Omega(Y)} g(a,b) p_{X,Y}(a,b)$$


Another example.

Suppose the table below gives us the joint pmf of X and Y.

What is the marginal p Are X and Y independe What is E(XY)?	ent? $R(Y=y)=\begin{cases} 0.5 & y=1 \\ 0.5 & y=1 \end{cases}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X=(2
P(X=1,Y=1)	F P(X=1)P(Y=1)	X\Y	1	2
0.4		1	0.4	0.1
· ·		2	0.1	0.4

- Suppose the number of requests Z to a particular web server per hour is $Poisson(\lambda)$. And that the request comes from within the US with probability p.
- Let X be the number of requests per hour from the US and let Y be the number of requests per hour from outside the US. What is the joint pmf of X and Y? Are they independent?

$$\mathbb{P}(X=1,Y=1)$$

$$\begin{array}{|c|c|c|c|}\hline & \text{Discrete} & \text{Continuous} \\ \hline \text{Joint PMF/PDF} & p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y) & f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y) \\ \hline \text{Joint range/support} & \{(x,y) \in \Omega_X \times \Omega_Y : p_{X,Y}(x,y) > 0\} & \{(x,y) \in \Omega_X \times \Omega_Y : f_{X,Y}(x,y) > 0\} \\ \hline \text{Joint CDF} & F_{X,Y}(x,y) = \sum_{t \leq x,s \leq y} p_{X,Y}(t,s) & F_{X,Y}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{X,Y}(t,s) \, ds dt \\ \hline \text{Normalization} & \sum_{x,y} p_{X,Y}(x,y) = 1 & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx dy = 1 \\ \hline \text{Marginal PMF/PDF} & p_X(x) = \sum_y p_{X,Y}(x,y) & f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy \\ \hline \text{Expectation} & \mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y) & \mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx dy \\ \hline \end{array}$$

Expectation
$$p_{X}(x) = \sum_{y} p_{X,Y}(x,y) \qquad f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$

$$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y)p_{X,Y}(x,y) \qquad \mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f_{X,Y}(x,y)dxdy$$

$$f_{X}(x)dx \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

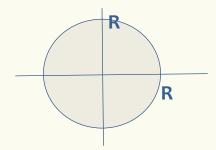
$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

$$f_{X,Y}(x,y) d \times dy \approx R(X \text{ is within } d \times d \times)$$

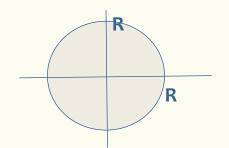
Independence (continuous random variables)

Definition. Let *X* and *Y* be continuous random variables. The **joint pdf** of *X* and *Y* is

$$f_{X,Y}(a,b) \neq \Pr(X=a,Y=b)$$


Definition. The **joint range** of $p_{X,Y}$ is

$$\Omega(X,Y) = \{(c,d) : p_{X,Y}(c,d) > 0\} \subseteq \Omega(X) \times \Omega(Y)$$


Definition. *X* and *Y* are **independent** iff for all *a*, *b*

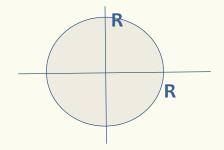
$$f_{X,Y}(a,b) = f_X(a) \cdot f_Y(b)$$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is their joint density f(x,y)?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is the range of X & Y and the marginal density of X and of Y?

Poll:

What is Ω_X ?

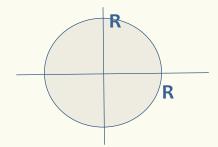

a. $[-\sqrt{R^2 - x^2}, \sqrt{R^2 - x^2}]$

b.
$$[-R,R]$$

c.
$$[-\sqrt{R^2 - y^2}, \sqrt{R^2 - y^2}]$$

d. Not sure

- Suppose that the surface of a disk is a circle with area R centered at the origin
 and that there is a single point imperfection at a location with is uniformly
 distributed across the surface of the disk. Let X and Y be the x and y coordinates
 of the imperfection (random variables) and let Z be the distance of the
 imperfection from the origin.
 - Are X and Y independent?


Poll:

Are X and Y independent?

- a. yes
- b. no

https://pollev.com/annakarlin185

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
 - What is E(Z)?

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support		
$\Omega_{X,Y}$	$\{(x,y) \in \Omega_X \times \Omega_Y : p_{X,Y}(x,y) > 0\}$	$\{(x,y) \in \Omega_X \times \Omega_Y : f_{X,Y}(x,y) > 0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x,s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$

Brain Break

