
CSE 312

Foundations of Computing II
Lecture 19: Application -- Distinct elements

1

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin

Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples: Google queries, Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?

Problem Setup

● Input: sequence of 𝑁 elements 𝑥!, 𝑥", … , 𝑥# from a known
universe 𝑈 (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while
maintaining working “summary”

What can we compute?

● Some functions are easy:

○ Min

○ Max

○ Sum

○ Average

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application:

You are the content manager at YouTube, and you
are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

● IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic

yesterday
● Web services: how many distinct users (cookies) searched/browsed a

certain term/item
* Advertising, marketing trends, etc.

Counting distinct elements

Want to compute number of distinct IDs in the stream.
How?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct

IDs in a hash table.
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number of
videos on youtube. This is not feasible.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

10
This Photo by Unknown Author is licensed under CC BY-NC-ND

http://cybershamans.blogspot.com/2012/01/miercurea-fara-cuvinte-snow.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

We will use a hash function ℎ: 𝑈 → [0,1]
Assumption: For distinct values in 𝑈, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers.

Counting distinct elements

Hash function ℎ: 𝑈 → [0,1]
Assumption: For distinct values in 𝑈, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers.

Important: if you were to feed in two equivalent elements, the function
returns the same number.
• So m distinct elements à m iid uniform 𝑦!’s

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

𝒚𝟏, 𝒚𝟐, 𝒚𝟑, 𝒚𝟏, 𝑦$, 𝒚𝟐, 𝒚𝟏, 𝒚𝟒, 𝒚𝟏, 𝑦&, 𝑦'

Min of IID Uniforms

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), where do we expect the points to end up?

0 1
x𝑚 = 1

E[min 𝑌"] =

In general, E min 𝑌", ⋯ , 𝑌# = ?

Min of IID Uniforms

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

x

x x

𝑚 = 1

𝑚 = 2

E min 𝑌" = "
$

E min 𝑌", 𝑌$ = ?

In general, E min 𝑌", ⋯ , 𝑌# = ?

Min of IID Uniforms

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

E[min 𝑌", ⋯ , 𝑌%] =

E min 𝑌" = "
$

E min 𝑌", 𝑌$ = "
&

In general, E min 𝑌", ⋯ , 𝑌# = ?

Min of IID Uniforms

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

E[min 𝑌", ⋯ , 𝑌%] =
"

%'"
= "

(

E[min 𝑌"] =
"

"'"
= "

$

E[min 𝑌", 𝑌$] =
"

$'"
= "

&

In general, E[min 𝑌", ⋯ , 𝑌#] = "
#'"

17

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), then E[min 𝑌", ⋯ , 𝑌#] = "
#'"

Hash function ℎ: 𝑈 → [0,1] (hashes to a uniform value).
• So m distinct elements à m iid uniform values.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

𝒚𝟏, 𝒚𝟐, 𝒚𝟑, 𝒚𝟏, 𝑦', 𝒚𝟐, 𝒚𝟏, 𝒚𝟒, 𝒚𝟏, 𝑦", 𝑦)

𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)

A super duper clever idea!!!!!

If 𝑌", ⋯ , 𝑌* are iid Unif(0,1), where do we expect the points to end up?

In general, E[min 𝑌", ⋯ , 𝑌#] = "
#'"

Idea: m = !
*[,-. /!,⋯,/"]

− 1

A super duper clever idea!!!!!

If 𝑌", ⋯ , 𝑌* are iid Unif(0,1), where do we expect the points to end up?

In general, E[min 𝑌", ⋯ , 𝑌#] = "
#'"

Idea: m = !
*[,-. /!,⋯,/"]

− 1

Let’s keep track of the value val of min of hash values,

and estimate 𝑚 as Round "
+,-

− 1

The Distinct Elements Algorithm

Stream: 13, 25, 19, 25, 19, 19

Hashes:

Distinct Elements Example
val=

Suppose	that
𝒉 𝟏𝟑 = 𝟎. 𝟓𝟏
𝒉 𝟐𝟓 = 𝟎. 𝟐𝟔
𝒉 𝟏𝟗 = 𝟎. 𝟕𝟗

Stream: 13, 25, 19, 25, 19, 19

Hashes:

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = 0.51

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Return
round(1/0.26 - 1) =
round(2.846) = 3

Diy: Distinct Elements Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9

Problem

val = min 𝑌", ⋯ , 𝑌# E[𝑣𝑎𝑙] = "
#'"

Algorithm:
Track 𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)
estimate m = 1/ 𝑣𝑎𝑙 -1

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]?

Problem

val = min 𝑌", ⋯ , 𝑌# E[𝑣𝑎𝑙] = "
#'"

Algorithm:
Track 𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)
estimate m = 1/ 𝑣𝑎𝑙 -1

Var 𝑣𝑎𝑙 ≈
1

𝑚 + 1 $

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]?

What can we do to fix this?

How can we reduce the variance?

Idea: Repetition to reduce variance!

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions ℎ", ℎ$, ⋯ ℎ.
Keep track of k independent min hash values

𝑣𝑎𝑙" = min ℎ" 𝑥" , ⋯ , ℎ" 𝑥) = min(Y"", ⋯ , 𝑌#")
𝑣𝑎𝑙$ = min ℎ$ 𝑥" , ⋯ , ℎ$ 𝑥) = min(Y"$, ⋯ , 𝑌#$)

…	…	
𝑣𝑎𝑙. = min ℎ. 𝑥" , ⋯ , ℎ. 𝑥) = min(Y"/, ⋯ , 𝑌#.)

𝑣𝑎𝑙 = "
.
Σ!𝑣𝑎𝑙!, Estimate 𝑚 = "

+,-
− 1

37

