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Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples:   Google queries,  Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is 

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Problem Setup

● Input: sequence of 𝑁 elements 𝑥!, 𝑥", … , 𝑥# from a known 
universe 𝑈 (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to 
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while 
maintaining working “summary”



What can we compute?

● Some functions are easy:

○ Min

○ Max 

○ Sum

○ Average
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Today: Counting distinct elements
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Application: 

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

● IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic 

yesterday
● Web services: how many distinct users (cookies) searched/browsed a 

certain term/item
* Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
How?
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N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct 

IDs in a hash table. 
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number of 
videos on youtube. This is not feasible. 
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N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
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We will use a  hash function ℎ: 𝑈 → [0,1]
Assumption: For distinct values in 𝑈, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Counting distinct elements



Hash function ℎ: 𝑈 → [0,1]
Assumption: For distinct values in 𝑈, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Important: if you were to feed in two equivalent elements, the function 
returns the same number. 
• So m distinct elements à m iid uniform 𝑦!’s

Counting distinct elements
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Min of IID Uniforms

If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), where do we expect the points to end up? 

0 1
x𝑚 = 1

E[min 𝑌" ] =

In general,  E min 𝑌", ⋯ , 𝑌# = ?
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If 𝑌", ⋯ , 𝑌# are iid Unif(0,1), then  E[min 𝑌", ⋯ , 𝑌# ] = "
#'"



Hash function ℎ: 𝑈 → [0,1] (hashes to a uniform value).
• So m distinct elements à m iid uniform values.  

Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

𝒚𝟏,   𝒚𝟐, 𝒚𝟑,  𝒚𝟏, 𝑦', 𝒚𝟐,  𝒚𝟏, 𝒚𝟒,   𝒚𝟏,  𝑦", 𝑦)

𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)



A super duper clever idea!!!!!

If 𝑌", ⋯ , 𝑌* are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min 𝑌", ⋯ , 𝑌# ] = "
#'"

Idea: m = !
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A super duper clever idea!!!!!

If 𝑌", ⋯ , 𝑌* are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min 𝑌", ⋯ , 𝑌# ] = "
#'"

Idea: m = !
*[,-. /!,⋯,/" ]

− 1

Let’s keep track of the value val of min of hash values, 

and estimate 𝑚 as Round "
+,-

− 1



The Distinct Elements Algorithm



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example
val=

Suppose	that
𝒉 𝟏𝟑 = 𝟎. 𝟓𝟏
𝒉 𝟐𝟓 = 𝟎. 𝟐𝟔
𝒉 𝟏𝟗 = 𝟎. 𝟕𝟗



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = 0.51 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19
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Distinct Elements Example

val = 0.26 
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Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 

Return
round(1/0.26 - 1) =
round(2.846) = 3 



Diy: Distinct Elements Example II

Stream: 11,   34,   89,  11,  89,   23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9 



Problem

val = min 𝑌", ⋯ , 𝑌# E[𝑣𝑎𝑙] = "
#'"

Algorithm: 
Track 𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)
estimate m = 1/ 𝑣𝑎𝑙 -1

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]? 



Problem

val = min 𝑌", ⋯ , 𝑌# E[𝑣𝑎𝑙] = "
#'"

Algorithm: 
Track 𝑣𝑎𝑙 = min ℎ 𝑋" , ⋯ , ℎ 𝑋) = min(𝑌", ⋯ , 𝑌#)
estimate m = 1/ 𝑣𝑎𝑙 -1

Var 𝑣𝑎𝑙 ≈
1

𝑚 + 1 $

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]? 

What can we do to fix this?



How can we reduce the variance?

Idea: Repetition to reduce variance! 



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use k independent hash functions ℎ", ℎ$, ⋯ ℎ.
Keep track of k independent min hash values 

𝑣𝑎𝑙" = min ℎ" 𝑥" , ⋯ , ℎ" 𝑥) = min(Y"", ⋯ , 𝑌#" )
𝑣𝑎𝑙$ = min ℎ$ 𝑥" , ⋯ , ℎ$ 𝑥) = min(Y"$, ⋯ , 𝑌#$)

…	…	
𝑣𝑎𝑙. = min ℎ. 𝑥" , ⋯ , ℎ. 𝑥) = min(Y"/, ⋯ , 𝑌#.)

𝑣𝑎𝑙 = "
.
Σ!𝑣𝑎𝑙!, Estimate 𝑚 = "

+,-
− 1
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