CSE 312

Foundations of Computing II

Lecture 19: Application -- Distinct elements

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Data mining – Stream Model

- In many data mining situations, the data is not known ahead of time.
 Examples: Google queries, Twitter or Facebook status updates
 Youtube video views
- In some ways, best to think of the data as an infinite stream that is non-stationary (distribution changes over time)
- Input elements (e.g. Google queries) enter/arrive one at a time. We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

Problem Setup

- Input: sequence of N elements $x_1, x_2, ..., x_N$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can't store the full data. => use minimal amount of storage while maintaining working "summary"

What can we compute?

- Some functions are easy:
 - Min
 - Max
 - 。 Sum
 - Average

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application:

You are the content manager at YouTube, and you are trying to figure out the **distinct** view count for a video. How do we do that?

Note: A person can view their favorite videos several times, but they only count as 1 **distinct** view!

Other applications

- IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)
 - * Anomaly detection, traffic monitoring
- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - * Advertising, marketing trends, etc.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of **distinct** IDs in the stream. How?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Want to compute number of distinct IDs in the stream.

- Naïve solution: As the data stream comes in, store all distinct IDs in a hash table.
- Space requirement O(m), where m is the number of distinct IDs
- Consider the number of users of youtube, and the number of videos on youtube. This is not feasible.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Want to compute number of **distinct** IDs in the stream.

How to do this without storing all the elements?

Yet another super cool application of probability

We will use a hash function $h: U \rightarrow [0,1]$

Assumption: For distinct values in U, the function maps to iid (independent and identically distributed) Unif(0,1) random numbers.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
$$y_1$$
, y_2 , y_3 , y_1 , y_4 , y_2 , y_1 , y_4 , y_1 , y_2 , y_5

Hash function $h: U \rightarrow [0,1]$

Assumption: For distinct values in U, the function maps to iid (independent and identically distributed) Unif(0,1) random numbers.

Important: if you were to feed in two equivalent elements, the function returns the **same** number.

• So m distinct elements \rightarrow m iid uniform y_i 's

In general,
$$E[\min(Y_1, \dots, Y_m)] = ?$$

$$m=1$$
 O

$$E[\min(Y_1)] =$$

In general,
$$E[\min(Y_1, \dots, Y_m)] = ?$$

$$E[\min(Y_1)] = \frac{1}{2}$$

$$m = 1$$

$$m = 2$$

$$\frac{X}{0}$$

$$E[\min(Y_1, Y_2)] = ?$$

In general,
$$E[\min(Y_1, \dots, Y_m)] = ?$$

$$E[\min(Y_1)] = \frac{1}{2}$$

$$m = 1$$

$$E[\min(Y_1, Y_2)] = \frac{1}{3}$$

$$m = 2$$

$$M = 4$$

$$E[\min(Y_1, Y_2)] = \frac{1}{3}$$

$$E[\min(Y_1, Y_2)] = \frac{1}{3}$$

In general,
$$E[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$$

$$E[\min(Y_1)] = \frac{1}{1+1} = \frac{1}{2}$$

$$m = 1$$

$$m = 2$$

$$m = 2$$

$$\sum_{0}^{\infty} \frac{X}{E[\min(Y_1, Y_2)]} = \frac{1}{2+1} = \frac{1}{3}$$

$$\sum_{0}^{\infty} \frac{X}{E[\min(Y_1, \dots, Y_4)]} = \frac{1}{4+1} = \frac{1}{5}$$

$$m = 4$$

If
$$Y_1, \dots, Y_m$$
 are iid Unif(0,1), then $E[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$

$$y_1$$
, y_2 , y_3 , y_1 , y_4 , y_2 , y_1 , y_4 , y_1 , y_2 , y_5

Hash function $h: U \rightarrow [0,1]$ (hashes to a uniform value).

• So m distinct elements → m iid uniform values.

$$val = \min(h(X_1), \dots, h(X_N)) = \min(Y_1, \dots, Y_m)$$

A super duper clever idea!!!!!

In general,
$$E[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$$

Idea: m =
$$\frac{1}{E[\min(Y_1, \dots, Y_m)]} - 1$$

A super duper clever idea!!!!!

If Y_1, \dots, Y_n are iid Unif(0,1), where do we expect the points to end up?

In general,
$$E[\min(Y_1, \dots, Y_m)] = \frac{1}{m+1}$$

Idea: m =
$$\frac{1}{E[\min(Y_1, \dots, Y_m)]} - 1$$

Let's keep track of the value val of min of hash values, and estimate m as Round $\left(\frac{1}{val} - 1\right)$

The Distinct Elements Algorithm

Algorithm 2 Distinct Elements Operations

```
function INITIALIZE()

val ← ∞

function UPDATE(X)

val ← min {val, hash(x)}

function ESTIMATE()

return round \left(\frac{1}{val} - 1\right)

for i = 1, ..., N: do

PLoop through all stream elements update(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

val=

Distinct Elements Example

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes:

 $update(x_i)$

return estimate()

Algorithm 2 Distinct Elements Operations

```
function INITIALIZE()
    val \leftarrow \infty
function UPDATE(X)
    val \leftarrow min \{val, hash(x)\}
function ESTIMATE()
      return round \left(\frac{1}{\text{val}} - 1\right)
                                                                         ▶ Loop through all stream elements
for i = 1, ..., N: do
                                                                            ▶ Update our single float variable
```

 \triangleright An estimate for n, the number of distinct elements.

Suppose that h(13) = 0.51h(25) = 0.26h(19) = 0.79

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes:

```
Algorithm 2 Distinct Elements Operations

function INITIALIZE()

val \leftarrow \infty

function UPDATE(X)

val \leftarrow \min \{ \text{val}, \text{hash}(\text{x}) \}

function ESTIMATE()

return round \left( \frac{1}{\text{val}} - 1 \right)

for i = 1, \dots, N: do

pdate(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

val = infty

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51,

```
      Algorithm 2 Distinct Elements Operations

      function INITIALIZE()
      val \leftarrow \infty

      function UPDATE(X)
      val \leftarrow \min \{val, hash(x)\}

      function ESTIMATE()
      return round \left(\frac{1}{val} - 1\right)

      for i = 1, \ldots, N: do
      > Loop through all stream elements

      update(x_i)
      > Update our single float variable

      return estimate()
      > An estimate for n, the number of distinct elements.
```

val = infty

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51,

```
      Algorithm 2 Distinct Elements Operations

      function INITIALIZE()
      val \leftarrow \infty

      function UPDATE(X)
      val \leftarrow \min \{val, hash(x)\}

      function ESTIMATE()
      return round \left(\frac{1}{val} - 1\right)

      for i = 1, \ldots, N: do
      > Loop through all stream elements

      update(x_i)
      > Update our single float variable

      return estimate()
      > An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26,

```
Algorithm 2 Distinct Elements Operations

function INITIALIZE()

val \leftarrow \infty

function UPDATE(X)

val \leftarrow \min \{ \text{val}, \text{hash}(\text{x}) \}

function ESTIMATE()

return round \left( \frac{1}{\text{val}} - 1 \right)

for i = 1, \dots, N: do

pdate(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26, 0.79,

```
Algorithm 2 Distinct Elements Operations

function INITIALIZE()

val \leftarrow \infty

function update(x)

val \leftarrow \min \{ \text{val}, \text{hash}(\text{x}) \}

function estimate()

return round \left( \frac{1}{\text{val}} - 1 \right)

for i = 1, \dots, N: do

pdate(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26, 0.79, 0.26,

```
      Algorithm 2 Distinct Elements Operations

      function INITIALIZE()
      val \leftarrow \infty

      function UPDATE(X)
      val \leftarrow \min \{val, hash(x)\}

      function ESTIMATE()
      return round \left(\frac{1}{val} - 1\right)

      for i = 1, \ldots, N: do
      > Loop through all stream elements

      update(x_i)
      > Update our single float variable

      return estimate()
      > An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79,

```
Algorithm 2 Distinct Elements Operations

function INITIALIZE()

val \leftarrow \infty

function update(x)

val \leftarrow \min \{ \text{val}, \text{hash}(\text{x}) \}

function estimate()

return round \left( \frac{1}{\text{val}} - 1 \right)

for i = 1, \dots, N: do

pdate(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

```
      Algorithm 2 Distinct Elements Operations

      function INITIALIZE()
      val \leftarrow \infty

      function UPDATE(X)
      val \leftarrow \min \{val, hash(x)\}

      function ESTIMATE()
      return round \left(\frac{1}{val} - 1\right)

      for i = 1, \ldots, N: do
      > Loop through all stream elements

      update(x_i)
      > Update our single float variable

      return estimate()
      > An estimate for n, the number of distinct elements.
```

```
Stream: 13, 25, 19, 25, 19, 19
```

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

```
      Algorithm 2 Distinct Elements Operations

      function INITIALIZE()
      val \leftarrow \infty

      function UPDATE(X)
      val \leftarrow \min \{val, hash(x)\}

      function ESTIMATE()
      return round \left(\frac{1}{val} - 1\right)

      for i = 1, \ldots, N: do
      > Loop through all stream elements

      update(x_i)
      > Update our single float variable

      return estimate()
      > An estimate for n, the number of distinct elements.
```

Return round(1/0.26 - 1) =

$$round(2.846) = 3$$

Diy: Distinct Elements Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

```
Algorithm 2 Distinct Elements Operations

function INITIALIZE()

val \leftarrow \infty

function update(x)

val \leftarrow \min \{ \text{val}, \text{hash}(x) \}

function estimate()

return round \left( \frac{1}{\text{val}} - 1 \right)

for i = 1, ..., N: do

b Loop through all stream elements

update(x_i)

return estimate()

An estimate for n, the number of distinct elements.
```

Problem

$$val = \min(Y_1, \dots, Y_m) \qquad E[val] = \frac{1}{m+1}$$

Algorithm:

```
Track val = \min(h(X_1), \dots, h(X_N)) = \min(Y_1, \dots, Y_m) estimate m = 1/val-1
```

But, val is not E[val]! How far is val from E[val]?

Problem

$$val = \min(Y_1, \dots, Y_m) \qquad E[val] = \frac{1}{m+1}$$

Algorithm:

Track
$$val = \min(h(X_1), \dots, h(X_N)) = \min(Y_1, \dots, Y_m)$$
 estimate m = 1/ val -1

But, val is not E[val]! How far is val from E[val]?

$$Var[val] \approx \frac{1}{(m+1)^2}$$

What can we do to fix this?

How can we reduce the variance?

Idea: Repetition to reduce variance!

How can we reduce the variance?

Idea: Repetition to reduce variance!

Use k **independent** hash functions $h^1, h^2, \dots h^k$ Keep track of k independent min hash values

$$val^{1} = \min(h^{1}(x_{1}), \dots, h^{1}(x_{N})) = \min(Y_{1}^{1}, \dots, Y_{m}^{1})$$

$$val^{2} = \min(h^{2}(x_{1}), \dots, h^{2}(x_{N})) = \min(Y_{1}^{2}, \dots, Y_{m}^{2})$$
......
$$val^{k} = \min(h^{k}(x_{1}), \dots, h^{k}(x_{N})) = \min(Y_{1}^{k}, \dots, Y_{m}^{k})$$

$$val = \frac{1}{k} \Sigma_i val_i$$
, Estimate $m = \frac{1}{val} - 1$

