
CSE 312

Foundations of Computing II
Lecture 18: Continuity correction & Distinct elements
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin



Reminders

• Quiz out tonight at 6pm.
– Questions about quiz? Send them privately to staff on edstem or

hop into OHs
– We will have someone monitoring edstem closely or else having

OHs tonight from 6-10pm, tomorrow from 5-9pm.
– No concept check today.

• Moving my office hours from tonight to tomorrow at 8-9pm. 
Same zoom link.

• Pset 6 out Wednesday as usual.
• No section this week. (Veteran’s Day)
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The CLT – Recap
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Theorem. (Central Limit Theorem) 𝑋!, … , 𝑋" iid with mean 𝜇 and 
variance 𝜎#. Let 𝑌" =

$!%⋯%$"'"(
) "

. Then,  

lim
"→+

𝑌" → 𝒩(0,1)

One main application: 
Use Normal Distribution to Approximate 𝑌! or 𝑆! or "

!
∑#$"
! 𝑋#

Also stated as:
• 𝑆! = 𝑋" +⋯+ 𝑋! ≈ 𝒩 𝑛𝜇, 𝑛𝜎# . If 𝑛 large, this is a decent approximation. 

• lim
!→%

"
!
∑&'"
! 𝑋& → 𝒩 𝜇, (

!

!
where 𝜇 = 𝐸 𝑋& and 𝜎# = 𝑉𝑎𝑟 𝑋&



Polling recap

• We wanted to estimate 𝑝, the fraction of the population 
voting in favor.
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Formalizing Polls
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Polling Procedure (Plan)
for i = 1 … 𝑛 :

1. Pick uniformly random person to call (prob: 1/𝑁)
2. Ask them how they will vote

𝑋, = 41, voting in favor
0, otherwise

Report our estimate of 𝑝: C𝑋 = !
"
∑,-!" 𝑋,

Population size 𝑁, true fraction of 
voting in favor 𝑝, sample size 𝑛.

Problem: We don’t know 𝑝



Polling recap

• We wanted to estimate 𝑝, the fraction of the population 
voting in favor.

• We discussed the notion of a confidence interval. We came 
up with a value of 𝑛 such that when we do this procedure, 
we’d be 98% confident that true 𝑝 ∈ [ )𝑝 ± 0.05] .
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Polling recap

• We wanted to estimate 𝑝, the fraction of the population 
voting in favor.

• We discussed the notion of a confidence interval. We came 
up with a value of 𝑛 such that when we do this procedure, 
we’d be 98% confident that true 𝑝 ∈ [ )𝑝 ± 0.05] .

• We used CLT and 𝑝 1 − 𝑝 ≤ 0.5 to find a good 𝑛.
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• First foray into statistics!!  

• Statistical inference: using samples to infer something about 
the distribution.
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Agenda

• One more CLT example
• Continuity correction
• Application: Distinct Elements
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You're trying to figure out your finances over the upcoming year. Based on your 
recent spending patterns, you know that you spend $1200 a month on average, with 
a standard deviation of $400, and each month's spending is independent and 
identically distributed. In addition, because these are hard times, you don't have any 
income. How much money should you have in your bank account right now if you 
don't want to go broke in the next 12 months, with probability at least .95?  Assume 
that your spending over the next 12 months is approximately normally distributed 
(by the CLT).
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Table of Φ 𝑧 CDF of 
Standard Normal Distn
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Agenda

• One more CLT example
• Continuity correction
• Application: Distinct Elements
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Example – Naive Approximation of Binomial

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

./

≈ 0.2448

Approx.

ℙ 20 ≤ 𝑋 ≤ 21 = Φ
20 − 20

10
≤
𝑋 − 20
10

≤
21 − 20

10

≈ Φ 0 ≤
𝑋 − 20
10

≤ 0.32

= Φ 0.32 − Φ 0 ≈ 0.1241
😢

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎# = Var 𝑋 = 0.25𝑛 = 10



Example – Even Worse Approximation

Fair coin flipped (independently) 40 times. Probability of 20 heads?
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Exact. ℙ 𝑋 = 20 =
40
20

1
2

./

≈ 0.1254

Approx. ℙ 20 ≤ 𝑋 ≤ 20 = 0 😢



Solution – Continuity Correction 

Round to next integer!
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To estimate probability that discrete RV lands in (integer) interval {𝑎, … , 𝑏}, compute 
probability continuous approximation lands in interval [𝑎 − "

#
, 𝑏 + "

#
]



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

./

≈ 0.2448

Approx. 𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎# = Var 𝑋 = 0.25𝑛 = 10



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 or 21 heads?
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Exact. ℙ 𝑋 ∈ 20,21 =
40
20

+
40
21

1
2

./

≈ 0.2448

Approx.

ℙ 19.5 ≤ 𝑋 ≤ 21.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
21.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.47

= Φ −0.16 − Φ 0.47 ≈ 0.2452
👍

𝑋 = # heads 𝜇 = 𝔼 𝑋 = 0.5𝑛 = 20 𝜎# = Var 𝑋 = 0.25𝑛 = 10



Example – Continuity Correction

Fair coin flipped (independently) 40 times. Probability of 20 heads?

20

Exact. ℙ 𝑋 = 20 =
40
20

1
2

./

≈ 0.1254

Approx. ℙ 19.5 ≤ 𝑋 ≤ 20.5 = Φ
19.5 − 20

10
≤
𝑋 − 20
10

≤
20.5 − 20

10

≈ Φ −0.16 ≤
𝑋 − 20
10

≤ 0.16

= Φ −0.16 − Φ 0.16 ≈ 0.1272



Agenda

• One more CLT example
• Continuity correction
• Application: Distinct Elements
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Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples:   Google queries,  Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is 

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Problem Setup

● Input: sequence of 𝑁 elements 𝑥", 𝑥%, … , 𝑥& from a known 
universe 𝑈 (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to 
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while 
maintaining working “summary”



What can we compute?

● Some functions are easy:

○ Min

○ Max 

○ Sum

○ Average

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4



Today: Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

Application: 

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

● IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic 

yesterday
● Web services: how many distinct users (cookies) searched/browsed a 

certain term/item
* Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
How?

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct 

IDs in a hash table. 
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number of 
videos on youtube. This is not feasible. 

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
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Hash function ℎ: 𝑈 → [0,1]
Assumption: For distinct values in 𝑈, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Important: if you were to feed in two equivalent elements, the function 
returns the same number. 
• So m distinct elements à m iid uniform 𝑦,’s

Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

𝒚𝟏,   𝒚𝟐, 𝒚𝟑,  𝒚𝟏, 𝑦&, 𝒚𝟐,  𝒚𝟏, 𝒚𝟒,   𝒚𝟏,  𝑦(, 𝑦)



Min of IID Uniforms

If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), where do we expect the points to end up? 

0 1
x𝑚 = 1

E[min 𝑌! ] =

In general,  E min 𝑌!, ⋯ , 𝑌0 = ?



Min of IID Uniforms

If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), where do we expect the points to end up? 

0 1

0 1

x

x x

𝑚 = 1

𝑚 = 2

E min 𝑌! = !
#

E min 𝑌!, 𝑌# = ?

In general,  E min 𝑌!, ⋯ , 𝑌0 = ?



Min of IID Uniforms

If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), where do we expect the points to end up? 

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

E[min 𝑌!, ⋯ , 𝑌. ] =

E min 𝑌! = !
#

E min 𝑌!, 𝑌# = !
1

In general,  E min 𝑌!, ⋯ , 𝑌0 = ?



Min of IID Uniforms

If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), where do we expect the points to end up? 

0 1

0 1

0 1

x

x x

x x x x

𝑚 = 1

𝑚 = 2

𝑚 = 4

E[min 𝑌!, ⋯ , 𝑌. ] =
!

.%!
= !

2

E[min 𝑌! ] =
!

!%!
= !

#

E[min 𝑌!, 𝑌# ] =
!

#%!
= !

1

In general,  E[min 𝑌!, ⋯ , 𝑌0 ] = !
0%!
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If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), then  E[min 𝑌!, ⋯ , 𝑌0 ] = !
0%!



Hash function ℎ: 𝑈 → [0,1] (hashes to a uniform value).
• So m distinct elements à m iid uniform values.  

Counting distinct elements

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4

𝒚𝟏,   𝒚𝟐, 𝒚𝟑,  𝒚𝟏, 𝑦*, 𝒚𝟐,  𝒚𝟏, 𝒚𝟒,   𝒚𝟏,  𝑦%, 𝑦,

𝑣𝑎𝑙 = min ℎ 𝑋! , ⋯ , ℎ 𝑋3 = min(𝑌!, ⋯ , 𝑌0)



A super duper clever idea!!!!!

If 𝑌!, ⋯ , 𝑌" are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min 𝑌!, ⋯ , 𝑌0 ] = !
0%!

Idea: m = "
-[/01 2!,⋯,2" ]

− 1



A super duper clever idea!!!!!

If 𝑌!, ⋯ , 𝑌" are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min 𝑌!, ⋯ , 𝑌0 ] = !
0%!

Idea: m = "
-[/01 2!,⋯,2" ]

− 1

Let’s keep track of the value val of min of hash values, 

and estimate 𝑚 as Round !
456

− 1



The Distinct Elements Algorithm



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example
val=

Suppose	that
𝒉 𝟏𝟑 = 𝟎. 𝟓𝟏
𝒉 𝟐𝟓 = 𝟎. 𝟐𝟔
𝒉 𝟏𝟗 = 𝟎. 𝟕𝟗



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = 0.51 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 

Return
round(1/0.26 - 1) =
round(2.846) = 3 



Diy: Distinct Elements Example II

Stream: 11,   34,   89,  11,  89,   23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9 



Problem

val = min 𝑌!, ⋯ , 𝑌0 E[𝑣𝑎𝑙] = !
0%!

Algorithm: 
Track 𝑣𝑎𝑙 = min ℎ 𝑋! , ⋯ , ℎ 𝑋3 = min(𝑌!, ⋯ , 𝑌0)
estimate m = 1/ 𝑣𝑎𝑙 -1

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]? 



Problem

val = min 𝑌!, ⋯ , 𝑌0 E[𝑣𝑎𝑙] = !
0%!

Algorithm: 
Track 𝑣𝑎𝑙 = min ℎ 𝑋! , ⋯ , ℎ 𝑋3 = min(𝑌!, ⋯ , 𝑌0)
estimate m = 1/ 𝑣𝑎𝑙 -1

Var 𝑣𝑎𝑙 ≈
1

𝑚 + 1 #

But, 𝑣𝑎𝑙 is not E[𝑣𝑎𝑙]! How far is 𝑣𝑎𝑙 from E[𝑣𝑎𝑙]? 

What can we do to fix this?



How can we reduce the variance?

Idea: Repetition to reduce variance! 



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use k independent hash functions ℎ!, ℎ#, ⋯ ℎ7
Keep track of k independent min hash values 

𝑣𝑎𝑙! = min ℎ! 𝑥! , ⋯ , ℎ! 𝑥3 = min(Y!!, ⋯ , 𝑌0! )
𝑣𝑎𝑙# = min ℎ# 𝑥! , ⋯ , ℎ# 𝑥3 = min(Y!#, ⋯ , 𝑌0#)

…	…	
𝑣𝑎𝑙7 = min ℎ7 𝑥! , ⋯ , ℎ7 𝑥3 = min(Y!8, ⋯ , 𝑌07)

𝑣𝑎𝑙 = !
7
Σ,𝑣𝑎𝑙,, Estimate 𝑚 = !

456
− 1
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If 𝑌!, ⋯ , 𝑌0 are iid Unif(0,1), then  E[min 𝑌!, ⋯ , 𝑌0 ] = !
0%!


