# **CSE 312**

# Foundations of Computing II

**Lecture 12:** Zoo of Discrete RVs



# Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

# Motivation: "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

# Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

# Welcome to the Zoo! (Preview) & The State of the Zoo!

### $X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$E[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

### $X \sim \text{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$

$$E[X] = p$$

$$Var(X) = p(1 - p)$$

### $X \sim \text{Bin}(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

### $X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

### $X \sim \text{NegBin}(r, p)$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$E[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{p^2}$$

### $X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$E[X] = n\frac{K}{N}$$

$$Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$$

# Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

# **Discrete Uniform Random Variables**

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

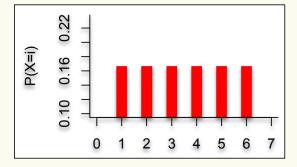
**Notation:** 

PMF:

**Expectation:** 

Variance:

Example: value shown on one roll of a fair die



# **Discrete Uniform Random Variables**

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation:  $X \sim \text{Unif}(a, b)$ 

**PMF:** 
$$\Pr(X = i) = \frac{1}{b - a + 1}$$

**Expectation:** 
$$E[X] = \frac{a+b}{2}$$

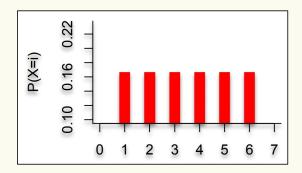
Variance: 
$$Var(X) = \frac{(b-a)(b-a+2)}{12}$$

Example: value shown on one roll of a fair die is Unif(1,6):

• 
$$Pr(X = i) = 1/6$$

• 
$$E[X] = 7/2$$

• Var(X) = 35/12



# Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

# **Bernoulli Random Variables**

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation:  $X \sim Ber(p)$ 

**PMF:** Pr(X = 1) = p, Pr(X = 0) = 1 - p

**Expectation:** 

Variance:

https://pollev.com/ annakarlin185

# Poll: Mean Variance a. p p b. p 1-p c. p p(1-p) d. p p(1-p)

# **Bernoulli Random Variables**

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation:  $X \sim Ber(p)$ 

**PMF:** Pr(X = 1) = p, Pr(X = 0) = 1 - p

**Expectation:** E[X] = p Note:  $E[X^2] = p$ 

Variance:  $Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1-p)$ 

### Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails

# Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

### **Binomial Random Variables**

A discrete random variable X that is the number of successes in n independent random variables  $Y_i \sim \text{Ber}(p)$ . X is a Binomial random variable where  $X = \sum_{i=1}^{n} Y_i$ 

### Examples:

- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

### Poll:

https://pollev.com/ annakarlin185

$$Pr(X = k) = a. \quad p^{k}(1-p)^{n-k}$$
b. \quad np
c. \quad \binom{n}{k}p^{k}(1-p)^{n-k}
d. \quad \binom{n}{n-k}p^{k}(1-p)^{n-k}

# **Binomial Random Variables**

A discrete random variable X that is the number of successes in n independent random variables  $Y_i \sim \text{Ber}(p)$ . X is a Binomial random

variable where 
$$X = \sum_{i=1}^{n} Y_i$$

Notation:  $X \sim Bin(n, p)$ 

**PMF:** 
$$\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

**Expectation:** 

Variance:

### Poll:

https://pollev.com/ annakarlin185

Mann Variance

|           | Mean | variance |
|-----------|------|----------|
| a.        | p    | p        |
| <i>b.</i> | np   | np(1-p)  |
| C.        | np   | $np^2$   |
| d.        | np   | $n^2p$   |

# **Binomial Random Variables**

A discrete random variable X that is the number of successes in n independent random variables  $Y_i \sim \text{Ber}(p)$ . X is a Binomial random

variable where  $X = \sum_{i=1}^{n} Y_i$ 

Notation:  $X \sim \text{Bin}(n, p)$ 

**PMF:**  $\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ 

Expectation: E[X] = np

Variance: Var(X) = np(1-p)

# Mean, Variance of the Binomial

If  $Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$  and independent (i.i.d), then  $X = \sum_{i=1}^n Y_i$ ,  $X \sim \text{Bin}(n, p)$ 

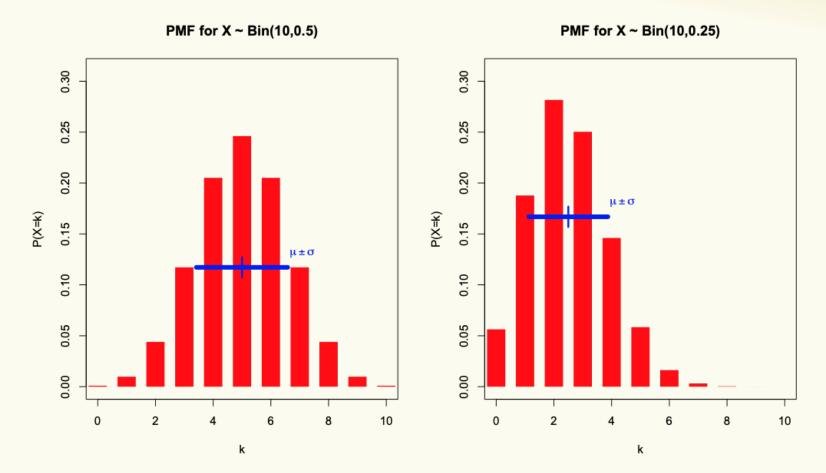
Claim E[X] = np

$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E[Y_i] = nE[Y_1] = np$$

Claim Var(X) = np(1-p)

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1-p)$$

# **Binomial PMFs**



# **Binomial PMFs**



# **Example**

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits). Let X be the number of corrupted bits. What is E[X]?

### Poll:

https://pollev.com/ annakarlin185

- a. 1022.99
- b. 1.024
- c. 1.02298
- d. 1
- e. Not enough information to compute

# **Brain Break**



# Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

# **Geometric Random Variables**

A discrete random variable X that models the number of independent trials  $Y_i \sim \text{Ber}(p)$  before seeing the first success. X is called a Geometric random variable with parameter p.

Notation:  $X \sim \text{Geo}(p)$ 

PMF:

**Expectation:** 

Variance:

# Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

# **Geometric Random Variables**

A discrete random variable X that models the number of independent trials  $Y_i \sim \text{Ber}(p)$  before seeing the first success. X is called a Geometric random variable with parameter p.

Notation:  $X \sim \text{Geo}(p)$ 

**PMF:** 
$$Pr(X = k) = (1 - p)^{k-1}p$$

Expectation: 
$$E[X] = \frac{1}{p}$$

Variance: 
$$Var(X) = \frac{1-p}{p^2}$$

# Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

# **Example: Music Lessons**

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is E[X]?

# **Negative Binomial Random Variables**

A discrete random variable X that models the number of independent trials  $Y_i \sim Ber(p)$  before seeing the  $r^{th}$  success. Equivalently,  $X = \sum_{i=1}^r Z_i$  where  $Z_i \sim Geo(p)$ . X is called a Negative Binomial random variable with parameters r, p.

Notation:  $X \sim \text{NegBin}(r, p)$ 

PMF:

**Expectation:** 

Variance:

# **Negative Binomial Random Variables**

A discrete random variable X that models the number of independent trials  $Y_i \sim Ber(p)$  before seeing the  $r^{th}$  success. Equivalently,  $X = \sum_{i=1}^r Z_i$  where  $Z_i \sim Geo(p)$ . X is called a Negative Binomial random variable with parameters r, p.

Notation:  $X \sim \text{NegBin}(r, p)$ 

**PMF:** 
$$\Pr(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

Expectation:  $E[X] = \frac{r}{p}$ 

Variance:  $Var(X) = \frac{r(1-p)}{p^2}$ 

# **Hypergeometric Random Variables**

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation:  $X \sim \text{HypGeo}(N, K, n)$ 

PMF:

**Expectation:** 

# **Hypergeometric Random Variables**

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation:  $X \sim \text{HypGeo}(N, K, n)$ 

**PMF:** 
$$\Pr(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

Expectation: 
$$E[X] = n \frac{K}{N}$$

Variance: 
$$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$$

# Hope you enjoyed the zoo! A fine the last the la

### $X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$E[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

### $X \sim \mathrm{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$
  
 $E[X] = p$ 

### $X \sim \text{Bin}(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

### $X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

### $X \sim \text{NegBin}(r, p)$

Var(X) = p(1-p)

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$E[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{p^2}$$

### $X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$E[X] = n\frac{K}{N}$$

$$Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$$

# **Preview: Poisson**

Model: # events that occur in an hour

- Expect to see 3 events per hour (but will be random)
- The expected number of events in t hours, is 3t
- Occurrence of events on disjoint time intervals is independent