CSE 312

Foundations of Computing II

Lecture 12: Zoo of Discrete RVs

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself ©

Motivation: "Named" Random Variables

Random Variables that show up all over the place.

 Easily solve a problem by recognizing it's a special case of one of these random variables.

Each RV introduced today will show:

- A general situation it models
- Its name and parameters
- Its PMF, Expectation, and Variance
- Example scenarios you can use it

Welcome to the Zoo! (Preview) &

$X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$E[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

$X \sim \text{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$

 $E[X] = p$
 $Var(X) = p(1 - p)$

$X \sim \text{Bin}(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

$X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

$X \sim \text{NegBin}(r, p)$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$E[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{n^2}$$

$X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$E[X] = n\frac{K}{N}$$

$$Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation:
$$X \sim Unif(a,b)$$

PMF: $P(X=k)=b-a+1$

Expectation: $\sum_{k=a}^{b} k \frac{1}{b-a+1} = \frac{a+b}{a}$

Variance:

Discrete Uniform Random Variables

A discrete random variable X equally likely to take any (int.) value between integers a and b (inclusive), is uniform.

Notation: $X \sim \text{Unif}(a, b)$

PMF:
$$\Pr(X = i) = \frac{1}{b - a + 1}$$

Expectation:
$$E[X] = \frac{a+b}{2}$$

Variance:
$$Var(X) = \frac{(b-a)(b-a+2)}{12}$$

Example: value shown on one roll of a fair die is Unif(1,6):

•
$$Pr(X = i) = 1/6$$

•
$$E[X] = 7/2$$

•
$$Var(X) = 35/12$$

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables 🕳
- Binomial Random Variables
- Geometric Random Variables
- Applications

Bernoulli Random Variables

Indicator

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim Ber(p)$

PMF:
$$Pr(X = 1) = p$$
, $Pr(X = 0) = 1 - p$

Expectation: P

Variance:

https://pollev.com/annakarlin185

Poll: Mean Variance a. p p b. p 1-p c. p p(1-p) d. p p(1-p)

Bernoulli Random Variables

A random variable X that takes value 1 ("Success") with probability p, and 0 ("Failure") otherwise. X is called a Bernoulli random variable.

Notation: $X \sim Ber(p)$

PMF: Pr(X = 1) = p, Pr(X = 0) = 1 - p

Expectation: E[X] = p Note: $E[X^2] = p$

Variance: $Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1-p)$

Examples:

- Coin flip
- Randomly guessing on a MC test question
- A server in a cluster fails

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric Random Variables
- Applications

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Examples:

- # of heads in n coin flips
- # of 1s in a randomly generated n bit string
- # of servers that fail in a cluster of n computers
- # of bit errors in file written to disk
- # of elements in a bucket of a large hash table

Poll:

https://pollev.com/ annakarlin185

$$\Pr(X = k) =$$

a.
$$p^{k}(1-p)^{n-k}$$

c.
$$\binom{n}{k} p^k (1-p)^{n-k}$$

d.
$$\binom{n}{n-k} p^k (1-p)^{n-k}$$

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim Bin(n, p)$

PMF:
$$Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation:

Variance:

		٠.	
D	^	Ш	١
	v	Ш	ı

k= 0,1,.., https://pollev.com/ annakarlin185

		Mean	Variance	
	а.	p	p	
	b.	np	np(1-p)	
_	С.	np	np^2	
	d.	np	n^2p	

Binomial Random Variables

A discrete random variable X that is the number of successes in n independent random variables $Y_i \sim \text{Ber}(p)$. X is a Binomial random variable where $X = \sum_{i=1}^{n} Y_i$

Notation: $X \sim \text{Bin}(n, p)$

PMF: $\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation: E[X] = np

Variance: Var(X) = np(1-p)

Mean, Variance of the Binomial

If
$$Y_1, Y_2, ..., Y_n \sim \text{Ber}(p)$$
 and independent (i.i.d), then $X = \sum_{i=1}^n Y_i$, $X \sim \text{Bin}(n, p)$

Claim
$$E[X] = np$$

$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E[Y_i] = nE[Y_1] = np$$

Claim Var(X) = np(1-p)

$$Var(X) = Var\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} Var(Y_i) = nVar(Y_1) = np(1-p)$$

14

by independen Ce

mean = expectation.

Binomial PMFs

Example

Sending a binary message of length 1024 bits over a network with probability 0.999 of correctly sending each bit in the message without corruption (independent of other bits). Let X be the number of corrupted bits. What is E[X]?

Poll:

https://pollev.com/ annakarlin185

- a. 1022.99
- b. 1.024
- c. 1.02298
- d. 1
- e. Not enough information to compute

Brain Break

Agenda

- Discrete Uniform Random Variables
- Bernoulli Random Variables
- Binomial Random Variables
- Geometric and other Random Variables

$\mathcal{N}^{X} = \{1_{1}, 2_{1}, \dots \}$

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation
$$X \sim \text{Geo}(p)$$

PMF:
$$Pr(X=k) = (1-p)^{k-1} p$$

Expectation:
$$E(X) > \frac{1}{F}$$

Variance:

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Geometric Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim \text{Ber}(p)$ before seeing the first success. X is called a Geometric random variable with parameter p.

Notation: $X \sim \text{Geo}(p)$

PMF:
$$Pr(X = k) = (1 - p)^{k-1}p$$

Expectation:
$$E[X] = \frac{1}{p}$$

Variance:
$$Var(X) = \frac{1-p}{p^2}$$

Examples:

- # of coin flips until first head
- # of random guesses on MC questions until you get one right
- # of random guesses at a password until you hit it

Example: Music Lessons

Your music teacher requires you to play a 1000 note song without mistake. You have been practicing, so you have a probability of 0.999 of getting each note correct (independent of the others). If you mess up a single note in the song, you must start over and play from the beginning. Let X be the number of times you have to play the song from the start. What is E[X]?

Y: # rotes Iply until I ness up arck.

$$R(y=10) = 0.999 0.001$$

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim Ber(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^r Z_i$ where $Z_i \sim Geo(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$

PMF:

Expectation:

Variance:

Negative Binomial Random Variables

A discrete random variable X that models the number of independent trials $Y_i \sim Ber(p)$ before seeing the r^{th} success. Equivalently, $X = \sum_{i=1}^r Z_i$ where $Z_i \sim Geo(p)$. X is called a Negative Binomial random variable with parameters r, p.

Notation: $X \sim \text{NegBin}(r, p)$

PMF:
$$Pr(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

Expectation: $E[X] = \frac{r}{p}$

Variance:
$$Var(X) = \frac{r(1-p)}{p^2}$$

Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a

Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$

PMF:

Expectation:

$$Pr(X=k)=\frac{|K|}{|V|}$$

Hypergeometric Random Variables

A discrete random variable X that measures the number of white balls you draw when you draw n balls uniformly at random from a total of N of which K are white and the rest are black. X is called a Hypergeometric RV with parameters N, K, n.

Notation: $X \sim \text{HypGeo}(N, K, n)$

PMF:
$$\Pr(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

Expectation:
$$E[X] = n \frac{K}{N}$$

Variance:
$$Var(X) = n \frac{K(N-K)(N-n)}{N^2(N-1)}$$

Hope you enjoyed the zoo!

$X \sim \text{Unif}(a, b)$

$$P(X = k) = \frac{1}{b - a + 1}$$

$$E[X] = \frac{a + b}{2}$$

$$Var(X) = \frac{(b - a)(b - a + 2)}{12}$$

$X \sim \text{Ber}(p)$

$$P(X = 1) = p, P(X = 0) = 1 - p$$

 $E[X] = p$
 $Var(X) = p(1 - p)$

$X \sim \text{Bin}(n, p)$

$$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$$

$$E[X] = np$$

$$Var(X) = np(1 - p)$$

$X \sim \text{Geo}(p)$

$$P(X = k) = (1 - p)^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

$X \sim \text{NegBin}(r, p)$

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$

$$E[X] = \frac{r}{p}$$

$$Var(X) = \frac{r(1-p)}{n^2}$$

$X \sim \text{HypGeo}(N, K, n)$

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

$$E[X] = n\frac{K}{N}$$

$$Var(X) = n\frac{K(N-K)(N-n)}{N^2(N-1)}$$