CSE 312

Foundations of Computing II

Lecture 10: Bloom Filters; LOTUS

Anna R. Karlin

Slide Credit: Based on slides by Shreya Jayraman, Luxi Wang, Alex Tsun & myself ©

Last Class:

Linearity of Expectation

Today:

- An application: Bloom Filters!
- LOTUS

This Photo by Unknown Author is licensed under CC BY-SA

Basic Problem

Problem: Store a subset *S* of a <u>large</u> set *U*.

```
Example. U = \text{set of } 128 \text{ bit strings}
S = \text{subset of strings of interest}
```

Two goals:

- 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?"
- 2. Minimal storage requirements.

 $|U| \approx 2^{128}$

 $|S| \approx 1000$

Naïve Solution – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

$$S = \{0, 2, ..., K\}$$

0	1	2		K		
1	0	1	0	1	 0	0

Naïve Solution – Constant Time

Idea: Represent S as an array A with 2^{128} entries.

$$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

$$S = \{0, 2, ..., K\}$$

0	1	2		K		
1	0	1	0	1	 0	0

Membership test: To check. $x \in S$ just check whether A[x] = 1.

→ constant time! 👍 😀

Storage: Require storing 2¹²⁸ bits, even for small *S*.

Naïve Solution – Small Storage

Idea: Represent *S* as a list with |*S*| entries.

$$S = \{0, 2, \dots, K\}$$

Naïve Solution – Small Storage

Idea: Represent *S* as a list with |*S*| entries.

$$S = \{0, 2, ..., K\}$$

Storage: Grows with |S| only

Membership test: Check $x \in S$ requires time linear in |S|

(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size n using a hash function

Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$

Storage: *n* elements (size of array)

Hash Table

Idea: Map elements in S into an array A using a hash function

Membership test: To check $x \in S$ just

check whether $A[\mathbf{h}(x)] = x$

Storage: *n* elements

Challenge 2: Ensure

$$n = O(|S|)$$

Hashing: collisions

- Collisions occur when two elements of set map to the same location in the hash table.
- Common solution: chaining at each location (bucket) in the table, keep linked list of all elements that hash there.
- Want: hash function that distributes the elements of S well across hash table locations. Ideally uniform distribution!

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small.
- However, they need at least as much space as all the data being stored
- E.g. storing strings, or IP addresses or long DNA sequences.

Bloom Filters: motivation

- Large universe of possible data items.
- Data items are large (say 128 bits or more)
- Hash table is stored on disk or across network, so any lookup is expensive.
- Many (if not nearly all) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Bloom Filters: Motivation

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present.

Example:

 Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

Bloom Filters

to the rescue

Bloom Filters: motivation (3)

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Bloom Filters

- Stores information about a set of elements.
- Supports two operations:
 - 1. add(x) adds x to bloom filter
 - 2. contains(x) returns true if x in bloom filter, otherwise returns false
 - If returns false, definitely not in bloom filter.
 - If returns true, possibly in the structure (some false positives).

Bloom Filters

- Why accept false positives?
 - Speed both operations very very fast.
 - Space requires a miniscule amount of space relative to storing all the actual items that have been added.

Often just 8 bits per inserted item!

Bloom Filters: Initialization

Number of hash functions

Size of array associated to each hash function.

function Initialize(k,m)

for i = 1, ..., k: **do**

 t_i = new bit vector of m 0's

for each hash function, initialize an empty bit vector of size m

bloom filter t with m = 5 that uses k = 3 hash functions

function INITIALIZE(k,m) for i = 1, ..., k: do $t_i = \text{new bit vector of m 0's}$

Index →	Θ	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

Bloom Filters: Add

function ADD(x)for i = 1, ..., k: do

$$t_i[h_i(x)] = 1$$

for each hash function h_i

Index into ith bit-vector, at index produced by hash function and set to 1

 $h_i(x) \rightarrow result of hash function <math>h_i$ on x

bloom filter t with m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("thisisavirus.com")

 h_1 ("thisisavirus.com") \rightarrow 2

Index →	Θ	1	2	3	4
t ₁	0	0	0	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

$$h_1("thisisavirus.com") \rightarrow 2$$

 $h_2("thisisavirus.com") \rightarrow 1$

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	0	0	0	0
t ₃	0	0	0	0	0

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

$$h_1$$
("thisisavirus.com") $\rightarrow 2$
 h_2 ("thisisavirus.com") $\rightarrow 1$
 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	0

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)

for
$$i = 1, ..., k$$
: **do** $t_i[h_i(x)] = 1$

add("thisisavirus.com")

$$h_1$$
("thisisavirus.com") $\rightarrow 2$
 h_2 ("thisisavirus.com") $\rightarrow 1$
 h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t with m = 5 that uses k = 3 hash functions

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

contains("thisisavirus.com")

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") \rightarrow 2

True

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$

True True

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True True

True

 h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True True

True

 h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$

Index 0 1 2 3 4

Since all conditions satisfied, returns True (correctly)

τ_1	U	U		U	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

Bloom Filters: Contains

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, otherwise returns False

bloom filter t of length m = 5 that uses k = 3 hash functions

add("totallynotsuspicious.com")

function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 h_1 ("totallynotsuspicious.com") \rightarrow 1

Index →	Θ	1	2	3	4
t ₁	0	0	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for
$$i = 1, ..., k$$
: **do**
 $t_i[h_i(x)] = 1$

add("totallynotsuspicious.com")

 $h_1("totallynotsuspicious.com") \rightarrow 1$ $h_2("totallynotsuspicious.com") \rightarrow 0$

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	0	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash
functions add("totallynotsuspicious.com")

function ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ h₁("totallvnotsuspicious.com") → 1
h₂("totallvnotsuspicious.com") → 0
h₃("totallynotsuspicious.com") → 4

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash
functions add("totallynotsuspicious.com")

function ADD(X)
for
$$i = 1, ..., k$$
: do
 $t_i[h_i(x)] = 1$

Collision, is already set to 1

 $h_1("totallynotsuspicious.com") \rightarrow 1$ $h_2("totallynotsuspicious.com") \rightarrow 0$

h₃("totallynotsuspicious.com") → 4

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash
functions add("totallynotsuspicious.com")

function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$ h_1 ("totallynotsuspicious.com") \rightarrow 1 h_2 ("totallynotsuspicious.com") \rightarrow 0 h_3 ("totallynotsuspicious.com") \rightarrow 4

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

 h_1 ("verynormalsite.com") $\rightarrow 2$

True

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h₁("verynormalsite.com") → 2
h₂("verynormalsite.com") → 0

True True

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$

True True True

 h_1 ("verynormalsite.com") $\rightarrow 2$ h_2 ("verynormalsite.com") $\rightarrow 0$ h_3 ("verynormalsite.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	0	1	1	0	0
t ₂	1	1	0	0	0
t ₃	0	0	0	0	1

```
function CONTAINS(X)

return t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1

True

True

True
```

h₁("verynormalsite.com") → 2
h₂("verynormalsite.com") → 0
h₃("verynormalsite.com") → 4

	Index	Θ	1	2	3	4
Since all conditions s	atisfie	d, retu	ırns Tru	ıe (inco	rrectly	()
	$t_{\scriptscriptstyle 1}$	Θ	1	1	Θ	Θ
	t ₂	1	1	0	0	0
	t ₃	0	0	0	0	1

Bloom Filters: Summary

- An empty bloom filter is an empty k x m bit array with all values initialized to zeros
 - k = number of hash functions
 - m = size of each array in the bloom filter
- add(x) runs in O(k) time
- contains(x) runs in O(k) time
- requires O(km) space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter

Bloom Filters: Application

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k = 30 and m= 2,500,000

Hash Table	Bloom Filter

Comparison with Hash Tables - Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 3%

Hash Table	Bloom Filter

Bloom Filters: Many Applications

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce disk lookups
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

Bloom Filters typical of....

of randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

Back to R.V.s....

LOTUS

Law Of The Unconscious Statistician

Expectation of Random Variable

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$

or equivalently

$$E[X] = \sum_{x \in \Omega_X} x \cdot \Pr(X = x)$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Linearity of Expectation

Theorem. For any two random variables X and Y

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Theorem. For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n, c \in \mathbb{R}$,

$$\mathbb{E}(a_1X_1 + \dots + a_nX_n + c) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n) + c.$$

Computing complicated expectations

Often boils down to the following three steps

<u>Decompose</u>: Finding the right way to decompose the random variable into sum of simple random variables

$$X = X_1 + \cdots + X_n$$

• LOE: Observe linearity of expectation.

$$\mathbb{E}(X) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n).$$

• Conquer: Compute the expectation of each X_i

Often, X_i are indicator (0/1) random variables.

Indicator random variable

For any event A, can define the indicator random variable X

$$X = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases} \quad \begin{array}{c} \mathbb{P}(X = 1) = \mathbb{P}(A) \\ \mathbb{P}(X = 0) = 1 - \mathbb{P}(A) \end{array}$$

$$\mathbb{P}(X = 1) = \mathbb{P}(A)$$
$$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$

$$\mathbb{E}(X) = \mathbb{P}(A)$$

Linearity is special!

In general
$$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$

E.g., $X = \begin{cases} 1 & with \ prob \ 1/2 \\ -1 & with \ prob \ 1/2 \end{cases}$
 $\circ \quad \mathbb{E}(X^2) \neq \mathbb{E}(X)^2$

How DO we compute $\mathbb{E}(g(X))$?

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- Let $Y = (X^2 + 4) \mod 8$.
- what is $\mathbb{E}(Y)$?

Pr(ω)	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- Let $Y = (X^2 + 4) \mod 8$.

 $g(x) = (x^2 + 4) \bmod 8$

• what is $\mathbb{E}(Y)$?

$Pr(\omega)$	ω	$X(\omega)$
1/6	1, 2, 3	3
1/6	1, 3, 2	1
1/6	2, 1, 3	1
1/6	2, 3, 1	0
1/6	3, 1, 2	0
1/6	3, 2, 1	1

Expectation of g(X) (LOTUS)

Definition. Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of Y = g(X) is

$$E[Y] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot Pr(\omega)$$

or equivalently

$$E[Y] = \sum_{x \in .\Omega_X} g(x) \cdot \Pr(X = x)$$

or equivalently

$$E[Y] = \sum_{y \in .\Omega_Y} \mathbf{y} \cdot \Pr(Y = y)$$

Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win the square number rolled dollars, times 10. Let X be the result of the dice roll. What is your expected winnings?

$$E[10X^2] =$$