CSE 312
Foundations of Computing li

Lecture 10: Bloom Filters; LOTUS

PAUL G. ALLEN SCHOOL Anna R. Karlin

OF COMPUTER SCIENCE & ENGINEERING

Slide Credit: Based on slides by Shreya Jayraman, Luxi Wang, Alex Tsun & myself ©

1



Last Class:
* Linearity of Expectation

Today:
* An application: Bloom Filters!
* LOTUS

Kandinsky ¢

This Photo by Unknown Author is licensed under CC BY-SA


https://commons.wikimedia.org/wiki/File:Vertiefte_Regung_(Deepened_Impulse)_by_Wassily_Kandinsky,_1928.jpg
https://creativecommons.org/licenses/by-sa/3.0/

Basic Problem

Problem: Store a subset S of a large set U.

Example. U = set of 128 bit strings |U| =~ 218
S = subset of strings of interest S| ~ 1000

 Two goals:
1. Very fast (ideally constant time) answers to queries “Is x € §7”
2. Minimal storage requirements.



Naive Solution - Constant Time

— | Alx] :{1 ifx €S

Idea: Represent S as an array A with 228 entries. 0 ifxegs

c 102 K e e le -1 [ |
_{ 1Ly meny } 1 0 1 0 1 0 0




Naive Solution — Constant Time
/

Idea: Represent S as an array A with 228 entries.

Alx] = {

1 ifxesS
0 ifxé&gsS

S =102, K ‘ e T e
1ey ey 1 0 1 0 1 0 0

Membership test: To check. x € S just check whether A[x]| = 1.

— constant time! «'E %:)

Storage: Require storing 22® bits, even for small S.



Naive Solution - Small Storage

Idea: Represent S as a list with |S| entries.

S =1{0,2,..,K}

—

o\

A

\




Naive Solution - Small Storage

Idea: Represent S as a list with |S| entries.

S=10,2,.., K} ‘

Storage: Grows with |S| only

Membership test: Check x € S requires time linearin |S|

(Can be made logarithmic by using a tree)

o\

A

EE

-
-

=

"\




Hash Table

Idea: Map elements in S into an array A of size n using a hash function

Membership test: To check x € S just check whether A[h(x)] = x

Storage: n elements (size of array)

hash function h: [U] — [n]



Hash Table

Idea: Map elements in S into an array A using a hash function

Membership test: To check x € S just
check whether A[h(x)] = x 00

Challenge 1: Ensure

h(x) # h(y)
formostx,y € S

Storage: 11 elements

O
O

Challenge 2: Ensure
n=0(S|)




Hashing: collisions

Collisions occur when two elements of set map to the
same location in the hash table.

Common solution: chaining — at each location (bucket) in
the table, keep linked list of all elements that hash there.

Want: hash function that distributes the elements of S well
across hash table locations. Ideally uniform distribution!

10



Hashing: summary

Hash Tables

* They store the data itself

* With a good hash function, the data
is well distributed in the table and
lookup times are small.

* However, they need at least as much
space as all the data being stored

* E.g. storing strings, or IP addresses
or long DNA sequences.

11



Bloom Filters: motivation

Large universe of possible data items.
Data items are large (say 128 bits or more)

Hash table is stored on disk or across network, so any
lookup is expensive.

Many (if not nearly all) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space
doing lookups for items that aren’t even present.

12



Bloom Filters: Motivation

Large universe of possible data items.
Hash table is stored on disk or in network, so any lookup is expensive.
Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space doing lookups
for items that aren’t even present.

Example:

Network routers: want to track source IP addresses
of certain packets, .e.g., blocked IP addresses.

13






Bloom Filters: motivation (3)

Probabilistic data structure.
Close cousins of hash tables.
Ridiculously space efficient

To get that, make occasional errors, specifically false
positives.

15



Bloom Filters

Stores information about a set of elements.
Supports two operations:
.. add(x) - adds x to bloom filter

2. contains(x) - returns true if x in bloom filter, otherwise returns
false
- If returns false, definitely not in bloom filter.
- Ifreturns true, possibly in the structure (some false
positives).

16



Bloom Filters

* Why accept false positives?
- Speed - both operations very very fast.
- Space - requires a miniscule amount of space relative to storing all
the actual items that have been added.

o Often just 8 bits per inserted item!

17



Bloom Filters: Initialization

Size of array

Number of i

hash associated to

functions each hash
function.

function INITIALIZE(K,m)

fori =1 k- do , for each hash
> function,

t; = new bit vector of m 0’s| dnitialize an
empty bit

vector of
size m




Bloom Filters: Example

bloom filter t with m

= 5 that uses k = 3 hash functions

Index 0 1 2 3
>
t, 0 0 0) 0)
t, 0 0 0) 0)
t, 0 0 0) 0)




Bloom Filters: Add

function App(x)
fOl’i: 1,,,,,k:d0 » for each hash

function h;

tilhi(x)] =1

Index into 1ith bit-vector, at h;(x) » result of hash
index produced by hash function function h; on x
and set to 1




Bloom Filters: Example

bloom filter t with m 5 that uses k = 3 hash functions

function App(x) add (“thisisavirus.com”)
fori=1,...,k:do h,(“thisisavirus.com”) > 2
tilhi(x)] =1

Index (0] 1 2 3
9
t, 0 0 0 0
t, 0 0 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“thisisavirus.com”)

function ApD(X) h,(“thisisavirus.com”) > 2
fori=1,...,k:do h,(“thisisavirus.com”) > 1
tilh;(x)] =1
()] R e
9
t, 0 0 1 0
t, 0 0 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“thisisavirus.com”)
h,(“thisisavirus.com”) > 2

function ADD(x) h,(“thisisavirus.com”) > 1
fori=1,...,k:do h;(“thisisavirus.com”) > 4
tilhi(x)] =1
(0] 1 2 3
9

t, 0 0 1 0

t, 0 1 0 0

t, 0 0 0 0




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“thisisavirus.com”)
h;(“thisisavirus.com”) > 2

function ApD(X) h,(“thisisavirus.com”) > 1
fori=1,...,k:do h;(“thisisavirus.com”) > 4
tilh;(x)] =1
l[l( )] Index (0] 1 2 3
9
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0




Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

functi - isi i
unction CONTAINS(x) contains(“thisisavirus.com”)

return | [h1(x)] == 1 Atr[ha(x)] == 1A - - At [hr(x)] == 1

Index 0] 1 2 3 4
>
t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions contains(“thisisavirus.com”)

h,;(“thisisavirus.com”) > 2

1 2 3 4
R

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions contains(“thisisavirus.com”)

h,;(“thisisavirus.com”) > 2

h,(“thisisavirus.com”) > 1

1 2 3 4
R

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash
functions contains(“thisisavirus.com”)

h,;(“thisisavirus.com”) > 2

h,(“thisisavirus.com”) > 1
h;(“thisisavirus.com”) > 4

1 2 3 4
R

t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“thisisavirus.com”)
(14 3 1 3 bb)

function coNTAINS(X) hl( thTSTsaV'! rus.com ) > 2
return 71 [11(x)] == 1 A ta[ha(X)] == 1 A -+ A 15 [ (x)] == 1 h,(“thisisavirus.com”) > 1
True True True h;(“thisisavirus.com”) > 4

4

0]

t, 0] 1 0 0 0]




Bloom Filters: Contains

Returns True if the bit vector
t; for each hash function has
bit 1 at index determined by
h.(x), otherwise returns False



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash
functions

add (“totallynotsuspicious.com”)

ffunction ADD(X)
fori=1,...,k:do
tl[hi(x)] =1

Index (0] 1 2 3
9
t, 0 0 1 0
t, 0 1 0 0
t, 0 0 0 0




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash

functions
add (“totallynotsuspicious.com”)

function App(X) h,(“totallynotsuspicious.com”) > 1
fori=1,...,k:do
tilhi(x)] =1

Index 0] 1 2 3 4
9
t, 0 0 1 0 0
t, 0 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: False Positives

bloom filter t of length m =

functions

function ApD(X)
fori=1,...,k:do
tilhi(x)] =1

5 that uses k = 3 hash

add (“totallynotsuspicious.com”)

h;(“totallynotsuspicious.com”) > 1

h,(“totallynotsuspicious.com”) > 0

Index 0] 4
>
t, 0 0
t, 0 0
t, 0 1




Bloom Filters: False Positives

bloom filter t of length m

functions

function ApD(X)
fori=1,...,k:do
ti[hi(x)] =1

5 that uses k = 3 hash
add (“totallynotsuspicious.com”)

h.(“totallvnotsuspicious.com”) > 1
h, (“totallvnotsuspicious.com”) > 0
h;(“totallynotsuspicious.com”?) » 4

Index 0] 1 2 3 4
>
t, 0 1 1 0) 0)
t, 1 1 0) 0) 0)
t, 0 0 0) 0) 1




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash
functions add (“totallynotsuspicious.com”)

h;(“totallynotsuspicious.com”) > 1

function ApD(X) -
h,(“totallynotsuspicious.com”) > 0

fori=1,...,k:do

tilhi(x)] =1 h;(“totallynotsuspicious.com”) > 4
Index 0 1 2 3 4
9
Collision,
is already t, 0 1 1 0 .
set to 1 t, L . ; X i




Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash

functions add (“totallynotsuspicious.com”)
i 1C ”
function App(x) ::1(:totaﬁynotsusquous.com”) > 1
fori=1,...,k:do ,(“totallynotsuspicious.com”) > 0
h.(“totallynotsuspicious.com”) > 4
tilhi(x)] =1 5 y p )
Index 0] 1 2 3 4
9
t, © 1 1 0) 0
t, 1 1 0 0 0
t; © 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“verynormalsite.com”)
function coNTAINS(X)
return | [h1(x)] == 1 At [ha(x)] == 1 A --- At [ (x)] ==
Index (0] 1 2 3 4
9
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions contains(“verynormalsite.com”)
function coNTAINS(x) h,(“verynormalsite.com”) > 2
return 7 [h1(x)] == 1 Atr[hy(x)] == 1 A --- Atp[he(x)] ==
True
Index 1 2 3 4
9
t, 1 1 0 0
t, 1 0 0 0
t, 0 0 0 1




Bloom Filters: Example

bloom filter t of length m =

functions

5 that uses k = 3 hash

contains(“verynormalsite.com”)

function coNTAINS(X)

h,(“verynormalsite.com”) > 2

return 71 (21 (x)] == 1 A ta[ho(x)] == 1A -~ At [ (x)] == 1 h,(“verynormalsite.com”) > 0
True True
Index (0 1 2 3 4
Q
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions

function coNTAINS(X)

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) > 2

return 71 [ (x)] == 1 At [ho(x)] == LA -+ Aty [ (x)] == 1 h,(“verynormalsite.com”) > 0
True True True h;(“verynormalsite.com”) > 4
Index 1 2 3 4
9
t, 1 1 0 0
t, 1 0 0 0
t, 0 0 0 1




Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash

functions

function coNTAINS(X)

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) > 2
h, (“verynormalsite.com”) > 0
h;(“verynormalsite.com”) > 4

return 71 [ (x)] == 1 Ata[ho(x)] == 1 A - At [he(x)] == 1
True True True
Index




Bloom Filters: Summary

An empty bloom filter is an empty k x m bit array with all values

initialized to zeros
ok =number of hash functions
o m =size of each array in the bloom filter

e add(x) runsin O(k) time

« contains(x) runs in O(k) time

« requires O(km) space (in bits!)

« Probability of false positives from collisions can be reduced by
increasing the size of the bloom filter

42



Bloom Filters: Application

e Google Chrome has a database of malicious URLs, but it takes a long time to
query.
e Want anin-browser structure, so needs to be efficient and be space-efficient

e Want it so that can check if a URL is in structure:
o If return False, then definitely not in the structure (don’t need to do

expensive database lookup, website is safe)
o If return True, the URL may or may not be in the structure. Have to perform

expensive lookup in this rare case.

43



False positive probability



Comparison with Hash Tables - Space

e Google storing 5 million URLs, each URL 40 bytes.
e Bloom filter with k =30 and m= 2,500,000

Hash Table Bloom Filter




Comparison with Hash Tables - Time

® Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
® 0.5 seconds to do lookup 1in the database, 1ms for lookup in Bloom filter.
® Suppose the false positive rate is 3%

Hash Table Bloom Filter




Bloom Filters: Many Applications

e Any scenario where space and efficiency are important.

o Usedalotin networking

e Indistributed systems when want to check consistency of data across
different locations, might send a Bloom filter rather than the full set of
data being stored.

« Google BigTable uses Bloom filters to reduce disk lookups

e Internet routers often use Bloom filters to track blocked IP addresses.

« Andonandon...

47



Bloom Filters typical of....

of randomized algorithms and randomized data structures.

. Simple

« Fast

. Efficient
. Elegant
. Useful!

48






Expectation of Random Variable

' Definition. Given a discrete RV X: () — R, the expectation or expected value of X is

E[X] = z X(w) - Pr(w)

wEe)

or equivalently

Intuition: “Weighted average” of the possible outcomes (weighted by probability)
50



Linearity of Expectation

Theorem. For any two random variables X and Y

E(X +Y) = E(X) + E(Y).

 Theorem. For any random variables X, ..., X,,, and real numbers
Ay, ...,qn,C ER,

E(a;X; + -+ a,X,, +¢c) = a,EX,) + -+ a,E(X,,) + c.

51



Computing complicated expectations
Often boils down to the following three steps

. Decompose: Finding the right way to decompose the random
variable into sum of simple random variables
X=X +--+X,
. LOE: Observe linearity of expectation.
E(X) = E(X;) + - + E(X},).
. Conqguer: Compute the expectation of each X;

Often, X; are indicator (0/1) random variables.



Indicator random variable

¥ — 1 if event A occurs
0 ifevent A does not occur

P(X =1) =P(A)

 P(X=0)=1-P(A) |



Linearity is special!

In general E(g (X)) # g(E(X))
| 1 withprob 1/2
B8 X = {—1 with prob 1/2

- E(X?) # E(X)?

How DO we compute E(g(X))?



Example: Returning Homeworks

* Class with n students, randomly hand back homeworks. All
permutations equally likely.

* Let X be the number of students who get their own HW
* LetY = (X%+4) mod 8.
* whatis E(Y)?

Pr(w)| w X(w)

116 1,2,3
116  1,3,2
16 2,1,3

3

1

1

116 2,3,1 0
116 3,1,2 0
1

116 3,2,1




Example: Returning Homeworks

* Class with n students, randomly hand back homeworks. All

permutations equally likely.

* Let X be the number of students who get their own HW

* LetY = (X%+4) mod 8.
* whatis E(Y)?

Pr(w)| w X(w)

1/6
1/6
1/6
1/6
1/6
1/6

1,2,3
13,2
2,1,3
2,3,1
3,1,2

32,1

3
1
1
0
0
1

g(x) = (x% + 4)mod 8

56



Expectation of g(X) (LOTUS)

Definition. Given a discrete RV X: (1 — R, the expectation or expected value of
Y=gX)is

BVl = ) g(X(@) - Pr(w)

wEN)

- or equivalently

~ or equivalently

57 |



Example: Expectation of g(X)

Suppose we rolled a fair, 6-sided die in a game. You will win
the square number rolled dollars, times 10. Let X be the result
of the dice roll. What is your expected winnings?

E[10X?] =






