CSE 312 # Foundations of Computing II Lecture 10: Bloom Filters; LOTUS Anna R. Karlin Slide Credit: Based on slides by Shreya Jayraman, Luxi Wang, Alex Tsun & myself © #### **Last Class:** • Linearity of Expectation ## **Today:** - An application: Bloom Filters! - LOTUS This Photo by Unknown Author is licensed under CC BY-SA #### **Basic Problem** **Problem:** Store a subset S of a <u>large</u> set U. **Example.** $$U = \text{set of } 128 \text{ bit strings}$$ $$|U| \approx 2^{128}$$ $$|U| \approx 1000$$ #### Two goals: - 1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" - 2. Minimal storage requirements. #### Naïve Solution – Constant Time **Idea:** Represent S as an array A with 2^{128} entries. $$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$ $$S = \{0, 2, ..., K\}$$ | 0 | 1 | 2 | | K | | | |---|---|---|---|---|-------|---| | 1 | 0 | 1 | 0 | 1 |
0 | 0 | #### Naïve Solution – Constant Time **Idea:** Represent S as an array A with 2^{128} entries. $$A[x] = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$ $$S = \{0, 2, ..., K\}$$ | 0 | 1 | 2 | | K | | | |---|---|---|---|---|-------|---| | 1 | 0 | 1 | 0 | 1 |
0 | 0 | **Membership test:** To check. $x \in S$ just check whether A[x] = 1. → constant time! 👍 😀 **Storage:** Require storing 2^{128} bits, even for small S. ## Naïve Solution – Small Storage **Idea:** Represent S as a list with |S| entries. $$S = \{0, 2, \dots, K\}$$ ## Naïve Solution – Small Storage **Idea:** Represent S as a list with |S| entries. $$S = \{0, 2, ..., K\}$$... **Storage:** Grows with |S| only **Membership test:** Check $x \in S$ requires time linear in |S| (Can be made logarithmic by using a tree) #### **Hash Table** |S|=n Idea: Map elements in S into an array A of size n using a hash function **Membership test:** To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$ $h: U \rightarrow \{o_{j}, \dots, o_{k-1}\}$ **Storage:** *n* elements (size of array) h(x) #### **Hash Table** **Idea:** Map elements in *S* into an array *A* using a hash function Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)] = x$ **Storage:** *n* elements Challenge 1: Ensure $h(x) \neq h(y)$ for most $x, y \in S$ ## **Hashing: collisions** - Collisions occur when two elements of set map to the same location in the hash table. - Common solution: chaining at each location (bucket) in the table, keep linked list of all elements that hash there. - Want: hash function that distributes the elements of S well across hash table locations. Ideally uniform distribution! ## **Hashing: summary** #### **Hash Tables** - They store the data itself - With a good hash function, the data is well distributed in the table and lookup times are small. - However, they need at least as much space as all the data being stored - E.g. storing strings, or IP addresses or long DNA sequences. #### **Bloom Filters: motivation** - · Large universe of possible data items. - Data items are large (say 128 bits or more) - Hash table is stored on disk or across network, so any lookup is expensive. - Many (if not nearly all) of the lookups return "Not found". Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present. #### **Bloom Filters: Motivation** - Large universe of possible data items. - Hash table is stored on disk or in network, so any lookup is expensive. - Many (if not most) of the lookups return "Not found". Altogether, this is bad. You're wasting a lot of time and space doing lookups for items that aren't even present. ## **Example:** Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses. ## **Bloom Filters** to the rescue ## Bloom Filters: motivation (3) - Probabilistic data structure. - Close cousins of hash tables. - Ridiculously space efficient - To get that, make occasional errors, specifically false positives. #### **Bloom Filters** - Stores information about a set of elements. - Supports two operations: - 1. add(x) adds x to bloom filter - contains(x) returns true if x in bloom filter, otherwise returns false - If returns false, definitely not in bloom filter. - If returns true, possibly in the structure (some false positives). #### **Bloom Filters** Why accept false positives? Speed – both operations very very fast.Space – requires a miniscule amount of space relative to storing all the actual items that have been added. Often just 8 bits per inserted item! #### **Bloom Filters: Initialization** #### bloom filter t with m = 5 that uses k = 3 hash functions **function** INITIALIZE(k,m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0's | Index
→ | 0 | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 0 | 0 | 0 | | t ₂ | 0 | 0 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 0 | #### **Bloom Filters: Add** function ADD(X) for $$i = 1, ..., k$$: do $t_i[h_i(x)] = 1$ Index into ith bit-vector, at index produced by hash function and set to 1 $h_i(x) \rightarrow result of hash function <math>h_i$ on x for each hash function h_i bloom filter t with m = 5 that uses k = 3 hash functions | add("thisisavirus.com") | add(| "thisisavirus.com | ") | |-------------------------|------|-------------------|----| |-------------------------|------|-------------------|----| h_1 ("thisisavirus.com") \rightarrow 2 | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|------------|---|---| | t ₁ | 0 | 0 | <u>(0)</u> | 0 | 0 | | t ₂ | 0 | 0 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 0 | bloom filter t of length m = 5 that uses k = 3 hash functions add("thisisavirus.com") function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$ | h_1 ("thisisavirus.com") | \rightarrow | 2 | |-------------------------------------|---------------|---| | h ₂ ("thisisavirus.com") | \rightarrow | 1 | | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------------------|-----|---|---|---|---| | $t_{\scriptscriptstyle 1}$ | 0 | 0 | 1 | 0 | 0 | | → t₂ | 0 / | 0 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 0 | bloom filter t of length m = 5 that uses k = 3 hash functions **function** ADD(X) **for** $$i = 1, ..., k$$: **do** $t_i[h_i(x)] = 1$ #### add("thisisavirus.com") | <pre>h₁("thisisavirus.com")</pre> | \rightarrow | 2 | |--|---------------|---| | h ₂ ("thisisavirus.com") | \rightarrow | 1 | | h ₃ ("thisisavirus.com") | \rightarrow | 4 | | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 0 | | | | | | | | bloom filter t of length m = 5 that uses k = 3 hash functions **function** ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ h_1 ("thisisavirus.com") $\rightarrow 2$ h_2 ("thisisavirus.com") $\rightarrow 1$ h_3 ("thisisavirus.com") $\rightarrow 4$ | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | add("thisisavirus.com") #### bloom filter t with m = 5 that uses k = 3 hash functions function CONTAINS(X) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains ("thisisavirus.com") | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | **function** CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("thisisavirus.com") \rightarrow 2 | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | **True** bloom filter t of length m = 5 that uses k = 3 hash functions contains("thisisavirus.com") function CONTAINS(X) **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_2 ("thisisavirus.com") \rightarrow 1 h_1 ("thisisavirus.com") \rightarrow 2 | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | | function CONTAINS(X)
return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ | | | | h_1 ("thisisavirus.com") $\rightarrow 2$
h_2 ("thisisavirus.com") $\rightarrow 2$ | | | | | |--|------|------------------------------|---|--|---|---|---|--| | True | True | True → h₃("thisisavirus.com' | | | | | | | | | | Index
→ | 0 | 1 | 2 | 3 | 4 | | | | | t ₁ | 0 | 0 | 1 | 0 | 0 | | | | | t ₂ | 0 | 1 | 0 | 0 | 0 | | | | | + | 0 | 0 | 0 | 0 | | | bloom filter t of length m = 5 that uses k = 3 hash functions contains("thisisavirus.com") | function CONTAINS(X) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ True True True True | | | | <pre>h₁("thi h₂("thi h₃("thi</pre> | sisavir | us.com" |) → 1 | |--|--|----------------|---|---|---------|---------|-------| | | | Index | 0 | 1 | 2 | 3 | 4 | | Since all conditions satisfied, returns True (correctly) | | | | | | | 0 | | | | t ₂ | 0 | 1 | 0 | 0 | 0 | | | | t ₃ | Θ | 0 | Θ | 0 | 1 | #### **Bloom Filters: Contains** **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ Returns True if the bit vector t_i for each hash function has bit 1 at index determined by $h_i(x)$, otherwise returns False bloom filter t of length m = 5 that uses k = 3 hash functions function ADD(X) for i = 1, ..., k: do $t_i[h_i(x)] = 1$ | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | add("totallynotsuspicious.com") bloom filter t of length m = 5 that uses k = 3 hash functions **function** ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ ### add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") \rightarrow 1 | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 0 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | bloom filter t of length m = 5 that uses k = 3 hash functions **function** ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ add("totallynotsuspicious.com") h.(4)=A ha(y)=0 | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 1 | 1 | 0 | 0 | | t ₂ | 0 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com") **function** ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ 1 0 1 0 t_2 t_3 h₁("totallvnotsuspicious.com") → 1 0 0 0 0 ## p': 0 -> 80,1/3'3'13 #### **Bloom Filters: False Positives** ## bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicion **function** ADD(X) **for** $$i = 1, ..., k$$: **do** $t_i[h_i(x)] = 1$ Collision, is already set to 1 add("totallynotsuspicious.com") h_1 ("totallynotsuspicious.com") \rightarrow 1 h_2 ("totallynotsuspicious.com") \rightarrow 0 h₃("totallynotsuspicious.com") → 4 | Index
→ | 0 | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 1 | 1 | 0 | 0 | | t ₂ | 1 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | bloom filter t of length m = 5 that uses k = 3 hash functions add("totallynotsuspicious.com") **function** ADD(X) **for** i = 1, ..., k: **do** $t_i[h_i(x)] = 1$ | h₃("totallynotsuspicious.com") → 4 | | | | | | | | |------------------------------------|---|---|---|---|---|--|--| | Index
→ | Θ | 1 | 2 | 3 | 4 | | | | t ₁ | 0 | 1 | 1 | 0 | 0 | | | | t ₂ | 1 | 1 | 0 | 0 | 0 | | | | t ₃ | 0 | 0 | 0 | 0 | 1 | | | h_1 ("totallynotsuspicious.com") \rightarrow 1 h_2 ("totallynotsuspicious.com") \rightarrow 0 function contains(x) return $t_1[h_1(x)] = 1 \land t_2[h_2(x)] = 1 \land \cdots \land t_k[h_k(x)] = 1$ contains ("verynormalsite.com" | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 1 | | 0 | 0 | | t ₂ | 1 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | | function contains(x) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ contains("verynormalsite.com") $\Rightarrow 2$ True | Index
→ | 0 | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 1 | 1 | 0 | 0 | | t ₂ | 1 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | bloom filter t of length m = 5 that uses k = 3 hash functions ## contains("verynormalsite.com") **return** $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ h_1 ("verynormalsite.com") $\rightarrow 2$ h_2 ("verynormalsite.com") $\rightarrow 0$ True True function CONTAINS(X) | Index
→ | Θ | 1 | 2 | 3 | 4 | |----------------|---|---|---|---|---| | t ₁ | 0 | 1 | 1 | 0 | 0 | | t ₂ | 1 | 1 | 0 | 0 | 0 | | t ₃ | 0 | 0 | 0 | 0 | 1 | | | | | <u> </u> | | | _ | |---|----------------|---|--|---|---|--------------| | return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ | | | h_1 ("verynormalsite.com") $\rightarrow 2$
h_2 ("verynormalsite.com") $\rightarrow 0$
h_3 ("verynormalsite.com") $\rightarrow 4$ | | | | | | Index
→ | 0 | 1 | 2 | 3 | 4 | | | t ₁ | 0 | 1 | 1 | 0 | 0 | | | t ₂ | 1 | 1 | 0 | 0 | 0 | | | t ₃ | Θ | 0 | 0 | 0 | 1 | | | | | COI | ica ilis (| vei yiioi | mats ite | ·Com | |--|--|----------------|-----|---|-----------|----------|-----------| | function CONTAINS(X) return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land t_k[h_k(x)] == 1$ True True True | | | | h ₁ ("very
h ₂ ("very
h ₃ ("very | ynormal: | site.co | m") → 0 | | | | Index | 0 | 1 | 2 | 3 | 4 | | Since all conditions satisfied, returns True (in | | | | | ie (inco | orrectly | () | | | | t ₁ | 0 | 1 | 1 | 0 | 0 | | | | t ₂ | 1 | 1 | 0 | 0 | 0 | | | | + | 0 | 0 | 0 | 0 | 1 | #### **Bloom Filters: Summary** - An empty bloom filter is an empty k x m bit array with all values initialized to zeros - k = number of hash functions - o m = size of each array in the bloom filter - add(x) runs in O(k) time - contains(x) runs in O(k) time - requires O(km) space (in bits!) - Probability of false positives from collisions can be reduced by increasing the size of the bloom filter ## **Bloom Filters: Application** - Google Chrome has a database of malicious URLs, but it takes a long time to query. - Want an in-browser structure, so needs to be efficient and be space-efficient - Want it so that can check if a URL is in structure: - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe) - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case. ## **Comparison with Hash Tables - Space** n - Google storing 5 million URLs, each URL 40 bytes. - Bloom filter with the 30 and me 1,300,000 m= 10,000,000 K=8 0,0006 Bloom Filter 8 × 10,000,000 8 10,000,000 8 ## **Comparison with Hash Tables - Time** - Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious. - 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter. - Suppose the false positive rate is 3% Bloom Filter 102,000 × 1000 102 secs 103 secs 103 secs 103 secs 1000 10 about 5% yeor see #### **Bloom Filters: Many Applications** - Any scenario where space and efficiency are important. - Used a lot in networking - In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored. - Google BigTable uses Bloom filters to reduce disk lookups - Internet routers often use Bloom filters to track blocked IP addresses. - And on and on... ## Bloom Filters typical of.... of randomized algorithms and randomized data structures. - Simple - Fast - Efficient - Elegant - Useful! Back to R.V.s.... # LOTUS Law Of The Unconscious Statistician #### **Expectation of Random Variable** **Definition.** Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of X is $$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$ or equivalently $$E[X] = \sum_{x \in \Omega_X} x \cdot \Pr(X = x)$$ Intuition: "Weighted average" of the possible outcomes (weighted by probability) #### **Linearity of Expectation** **Theorem.** For any two random variables *X* and *Y* $$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$ **Theorem.** For any random variables $X_1, ..., X_n$, and real numbers $a_1, ..., a_n, c \in \mathbb{R}$, $$\mathbb{E}(a_1X_1 + \dots + a_nX_n + c) = a_1\mathbb{E}(X_1) + \dots + a_n\mathbb{E}(X_n) + c.$$ #### **Computing complicated expectations** Often boils down to the following three steps • <u>Decompose:</u> Finding the right way to decompose the random variable into sum of simple random variables $$X = X_1 + \cdots + X_n$$ LOE: Observe linearity of expectation. $$\mathbb{E}(X) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n).$$ • Conquer: Compute the expectation of each X_i Often, X_i are indicator (0/1) random variables. #### Indicator random variable For any event A, can define the indicator random variable X $$X = \begin{cases} 1 & \text{if event A occurs} \\ 0 & \text{if event A does not occur} \end{cases} \quad \mathbb{P}(X = 1) = \mathbb{P}(A)$$ $$\mathbb{P}(X = 1) = \mathbb{P}(A)$$ $$\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$$ $$\mathbb{E}(X) = \mathbb{P}(A)$$ ## **Example: Returning Homeworks** - Class with n students, randomly hand back homeworks. All permutations equally likely. - Let X be the number of students who get their own HW - Let $Y = (X^2 + 4) \mod 8$. - what is $\mathbb{E}(Y)$? | | Pr(ω) | ω | X | (ω) | Y(w) | |---|-------|---------|----|-----|-----------------| | | 1/6 | 1, 2, 3 | | 3 | (32+4) mid8 = 5 | | | 1/6 | 1, 3, 2 | | 1 | (19+4) ml8 = 5 | | 7 | 1/6 | 2, 1, 3 | | 1 | 5 | | | 1/6 | 2, 3, 1 | 7 | 0 | 4 | | | 1/6 | 3, 1, 2 | _\ | 0 | 4 | | | 1/6 | 3, 2, 1 | 1 | 1 | Ś | ## Linearity is special! In general $$\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$$ E.g., $$X = \begin{cases} 1 \text{ with prob } 1/2 \\ -1 \text{ with prob } 1/2 \end{cases}$$ $$_{\circ}\quad \mathbb{E}(X^{2})\neq \mathbb{E}(X)^{2}$$ How DO we compute $\mathbb{E}(g(X))$? $$E\left(\frac{X}{X}\right) = E\left(\frac{X}{X}\right)$$ $$E\left(\frac{X}{X}\right) = E\left(\frac{X}{X}\right)$$ ## **Expectation of** g(X) **(LOTUS)** **Definition.** Given a discrete RV $X: \Omega \to \mathbb{R}$, the expectation or expected value of $$Y = g(X)$$ is $$E[Y] = \sum_{\omega \in \Omega} g(X(\omega)) \cdot Pr(\omega)$$ or equivalently $$E[Y] = \sum_{x \in \Omega_X} g(x) \cdot \Pr(X = x)$$ or equivalently $$E[Y] = \sum_{y \in .\Omega_Y} y \cdot \Pr(Y = y)$$ LOTUS