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Foundations of Computing II
Lecture 10: Bloom Filters;  LOTUS
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Last Class:
• Linearity of Expectation
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Today:
• An application: Bloom Filters!
• LOTUS 

This Photo by Unknown Author is licensed under CC BY-SA
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Basic Problem
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Problem: Store a subset ! of a large set ".

Example. " = set of 128 bit strings
! = subset of strings of interest

" ≈ 2128

! ≈ 1000

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is % ∈ !?”
2. Minimal storage requirements.
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Naïve Solution – Constant Time
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Idea: Represent ! as an array ( with 2128 entries.

! " # … % …
" ! " ! " … ! !

A ! = #1 if ! ∈ (
0 if ! ∉ (

( = {0,2, … , K}



Naïve Solution – Constant Time
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Idea: Represent ! as an array ( with 2128 entries.

! " # … % …
" ! " ! " … ! !

A ! = #1 if ! ∈ (
0 if ! ∉ (

Membership test: To check.! ∈ ! just check whether A % = 1.

Storage: Require storing 2128  bits, even for small !.
!"→ constant time!

#$

( = {0,2, … , K}



Naïve Solution – Small Storage
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Idea: Represent ! as a list with |!| entries.

( = {0, 2, … , 1} 0 2 … K



Naïve Solution – Small Storage
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Idea: Represent ! as a list with |!| entries.

( = {0, 2, … , 1} 0 2 … K

Storage: Grows with |!| only !"

Membership test: Check % ∈ ( requires time linear in |!|
(Can be made logarithmic by using a tree) #$



Hash Table
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Idea: Map elements in ! into an array ( of size , using a hash function

hash function 2: U → [7]

1
2

3
4 5

K-1
K

1

2
3

4
5

Membership test: To check % ∈ ! just check whether ( -(%) = %

Storage: , elements (size of array)

Ist n

h U O I in i

THE



Hash Table
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Idea: Map elements in ! into an array ( using a hash function

Membership test: To check % ∈ ! just 
check whether ( -(%) = %

Storage: " elements

Challenge 1: Ensure 
2 9 ≠ 2 ;
for most !, A ∈ (

Challenge 2: Ensure
7 = B(|(|)



Hashing: collisions

● Collisions occur when two elements of set map to the 
same location in the hash table.

● Common solution: chaining – at each location (bucket) in 
the table, keep linked list of all elements that hash there.

● Want: hash function that distributes the elements of S  well 
across hash table locations. Ideally uniform distribution!
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Hashing: summary
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Hash Tables

• They store the data itself
• With a good hash function, the data 

is well distributed in the table and 
lookup times are small.

• However, they need at least as much 
space as all the data being stored

• E.g. storing strings, or IP addresses 
or long DNA sequences.



Bloom Filters: motivation

• Large universe of possible data items.
• Data items are large (say 128 bits or more)
• Hash table is stored on disk or across network, so any 

lookup is expensive.
• Many (if not nearly all) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space 
doing lookups for items that aren’t even present. 
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Bloom Filters: Motivation

• Large universe of possible data items.
• Hash table is stored on disk or in network, so any lookup is expensive.
• Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space doing lookups 
for items that aren’t even present. 

Example:
• Network routers: want to track source IP addresses 

of certain packets, .e.g., blocked IP addresses.
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Bloom Filters
to the rescue



Bloom Filters: motivation (3)

• Probabilistic data structure.
• Close cousins of hash tables.
• Ridiculously space efficient
• To get that, make occasional errors, specifically false 

positives.
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Bloom Filters

• Stores information about a set of elements.
• Supports two operations:

1. add(x) - adds x to bloom filter 
2. contains(x) - returns true if x in bloom filter, otherwise returns 

false
– If returns false, definitely not in bloom filter.
– If returns true, possibly in the structure (some false 

positives).
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Bloom Filters

• Why accept false positives?
– Speed – both operations very very fast. 
– Space – requires a miniscule amount of space relative to storing all 

the actual items that have been added.

○ Often just 8 bits per inserted item!
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Bloom Filters: Initialization

Size of array 
associated to 
each hash 
function. 

Number of 
hash 
functions

for each hash 
function, 
initialize an 
empty bit 
vector of 
size m

K
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Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions



Bloom Filters: Add

for each hash 
function hi

Index into ith bit-vector, at 
index produced by hash function 
and set to 1

hi(x) → result of hash 
function hi on x

e O



Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

h1(“thisisavirus.com”) → 2 
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Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“thisisavirus.com”)

h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

h2(“thisisavirus.com”) → 1 

is
half's O



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“thisisavirus.com”)

h2(“thisisavirus.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 

i 3
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Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“thisisavirus.com”)
h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“thisisavirus.com”) → 1 



Bloom Filters: Example

bloom filter t with m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

t



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions contains(“thisisavirus.com”)

True

h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

E
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Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions contains(“thisisavirus.com”)

TrueTrue
h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

D
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Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 
Index 

→ 
0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue
h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 

O



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 

Since all conditions satisfied, returns True (correctly)



Bloom Filters: Contains

Returns True if the bit vector
ti for each hash function has 
bit 1 at index determined by 
hi(x), otherwise returns False



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“totallynotsuspicious.com”)

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

y



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“totallynotsuspicious.com”) → 0 

y
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Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 
h2(“totallynotsuspicious.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h3(“totallynotsuspicious.com”) → 4 



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 
h2(“totallynotsuspicious.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Collision, 
is already 
set to 1

h3(“totallynotsuspicious.com”) → 4 

h O grid



Bloom Filters: False Positives

bloom filter t of length m = 5 that uses k = 3 hash 
functions add(“totallynotsuspicious.com”)

h1(“totallynotsuspicious.com”) → 1 
h2(“totallynotsuspicious.com”) → 0 
h3(“totallynotsuspicious.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions contains(“verynormalsite.com”)

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

z
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Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

True

contains(“verynormalsite.com”)
h1(“verynormalsite.com”) → 2 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

o



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

TrueTrue

contains(“verynormalsite.com”)

h2(“verynormalsite.com”) → 0 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h1(“verynormalsite.com”) → 2 

o



Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

TrueTrueTrue

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 
h1(“verynormalsite.com”) → 2 

000
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Bloom Filters: Example

bloom filter t of length m = 5 that uses k = 3 hash 
functions

TrueTrueTrue

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 
h1(“verynormalsite.com”) → 2 

Since all conditions satisfied, returns True (incorrectly)



Bloom Filters: Summary

● An empty bloom filter is an empty k x m bit array with all values 
initialized to zeros
○ k = number of hash functions
○ m = size of each array in the bloom filter

● add(x) runs in O(k) time
● contains(x) runs in O(k) time
● requires O(km) space (in bits!)
● Probability of false positives from collisions can be reduced by 

increasing the size of the bloom filter

42



Bloom Filters: Application

● Google Chrome has a database of malicious URLs, but it takes a long time to 
query.

● Want an in-browser structure, so needs to be efficient and be space-efficient
● Want it so that can check if a URL is in structure:

○ If return False, then definitely not in the structure (don’t need to do 
expensive database lookup, website is safe)

○ If return True, the URL may or may not be in the structure. Have to perform 
expensive lookup in this rare case.

43



Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with k = 30 and m= 2,500,000

n

a m Koo kg

5,000,000 40 8 10 0 bits

200,000,00g

10,000,000 B

slog space
False pos rate 0.06

0,0006



Comparison with Hash Tables - Time

Hash Table Bloom Filter

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 3%

Anatase

102,000 x 0.5sec
HI 102,000 x 102 sees

51,000 see Ipos
lookup in

actualheshtably

2000 0.5 100,000 003
x 0.5

about 5 0 2,602 see



Bloom Filters: Many Applications

● Any scenario where space and efficiency are important.
● Used a lot in networking
● In distributed systems when want to check consistency of data across 

different locations, might send a Bloom filter rather than the full set of 
data being stored.

● Google BigTable uses Bloom filters to reduce disk lookups
● Internet routers often use Bloom filters to track blocked IP addresses.
● And on and on…

47



Bloom Filters typical of….

of randomized algorithms and randomized data structures.

● Simple
● Fast
● Efficient
● Elegant
● Useful!

48
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Back to R.V.s….

LOTUS
Law Of The Unconscious Statistician



Expectation of Random Variable 

Definition. Given a discrete RV E: Ω → ℝ, the expectation or expected value of E is

E E = I
!∈#

E J ⋅ Pr(J)

or equivalently

E E = I
$∈#!

! ⋅ Pr(E = !)

50

Intuition: “Weighted average” of the possible outcomes (weighted by probability)

IF



Linearity of Expectation

51

Theorem. For any two random variables 6 and 7
8(6 + 7) = 8(6) + 8(7).   

Theorem. For any random variables 6!, … , 6", and real numbers 
<!, … , <" , = ∈ ℝ,

8 <!6! +⋯+ <"6" + = = <!8 6! +⋯+ <"8 6" + =.   



Computing complicated expectations

Often boils down to the following three steps

● Decompose: Finding the right way to decompose the random 
variable into sum of simple random variables 

# = #! +⋯+ #"
● LOE: Observe linearity of expectation.

'(#) = '(#!) + ⋯+ '(#").   
● Conquer: Compute the expectation of each ##

Often, ## are indicator (0/1) random variables.
of



Indicator random variable

For any event A, can define the indicator random variable X

# = *1 if event A occurs
0 if event A does not occur

ℙ E = 1 = ℙ A
ℙ E = 0 = 1 − ℙ A

' # = ℙ A
M A



Example: Returning Homeworks

• Class with n students, randomly hand back homeworks. All 
permutations equally likely.

• Let 6 be the number of students who get their own HW
• Let 7 = (6#+4) ABC 8.
• what is 8(7)?

P
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%& ' ' ((')
1/6 1, 2, 3 3

1/6 1, 3, 2 1

1/6 2, 1, 3 1

1/6 2, 3, 1 0

1/6 3, 1, 2 0

1/6 3, 2, 1 1

g x Pt4 md

PEEÉ 3
C md8 5
12 4 nd8 5 Ely 5PRY 5

5 4PRY 4
4 YErÉÉÉ4
s

EY Ey.gg j
d

emrx 3 tEDmdsrrI
044mad8 Pri



In general ' ;(#) ≠ ;(' # )
E.g., # = * 1 =>?ℎ ABCD 1/2

−1 =>?ℎ ABCD 1/2
○ 8 6# ≠ 8 6 #

How DO we compute ' ;(#) ? 

Linearity is special!
go

EGLY EG
I E X O

f
z z DI

F E X I
I 0

of
Y g X



Expectation of  ; # (LOTUS)

Definition. Given a discrete RV E: Ω → ℝ, the expectation or expected value of 
Y = R(E) is

E S = I
!∈#

R(E J ) ⋅ Pr(J)

or equivalently

E S = I
$∈.#".

R(!) ⋅ Pr(E = !)

or equivalently

E S = I
-∈.##.

A ⋅ Pr(S = A)
57
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