
CSE 312: Foundations of Computing II
Quiz Section #10: Review Questions for Final Exam

1. A European city’s temperature is modeled as a random variable with mean µ and standard deviation σ, measured
on the Celsius scale. A day is described as “ordinary” if the temperature during that day remains within one
standard deviation of the mean.

(a) Give formulas for the mean and variance, if temperature is measured on the Fahrenheit scale. The formula
for conversion is F = 32 + 1.8C.

(b) From your formulas in part (a), give formulas for the temperature range for an ordinary day on the Fahren-
heit scale.

2. You flip a fair coin independently and count the number of flips until the first tail, including that tail flip in the
count. If the count is n, you receive 2n dollars. What is the expected amount you will receive? How much would
you be willing to pay at the start to play this game?

3. During each day, the probability that your computer’s operating system crashes at least once is 5%, independent
of every other day. You are interested in the probability of at least 45 crash-free days out of the next 50 days.

(a) Find the probability of interest by using the normal approximation to the binomial.

(b) Find the probability of interest by using the Poisson approximation to the binomial.

4. Consider the line segment [0, L]. Let X ∼ Exp(4/L). If 0 ≤ X ≤ L, the line segment [0, L] is split into two at the
point X (yielding one piece of length X and one piece of length L − X), otherwise it is split into two at the point
L (yielding one piece of length L and one piece of length 0). Give your answers to 3 significant digits.

(a) Find the probability that the ratio of the shorter to the longer segment is less than 1/3.

(b) What is the probability that X is less than 0 or greater than L?

5. A computer network consisting of n computers is to be formed by connecting each computer to each of the
others by a direct (“point-to-point”) network cable.

(a) How many network cables are needed?

(b) Unfortunately, some of the cables may be faulty (“dead”) while others are OK (“alive”). How many
different “connectivity patterns” are possible? (E.g., “the cable between computers 1 and 3 is alive, but no
others are” is one pattern; “between 1 and 4, but no others” is a different pattern; “only the cable between
1 and 4 is dead” is a third pattern, etc.)

(c) Assuming that there is at least one “live” cable connected to every computer, show that there are at least
two computers in the network that are directly connected to the same number of other computers via live
cables.

6. Alice, Bob, and Carol repeatedly take turns rolling a fair die. Alice begins, Bob always follows Alice, Carol
always follows Bob, and Alice always follows Carol. Find the probability that Carol will be the first one to roll
a six.

7. Consider the line segment [0, L]. Let X ∼ N(L/2, L2/16). If 0 ≤ X ≤ L, the line segment [0, L] is split into two
at the point X (yielding one piece of length X and one piece of length L − X), otherwise it is split into two at the
point L (yielding one piece of length L and one piece of length 0). Give your answers to 3 significant digits.
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(a) Find the probability that the ratio of the shorter to the longer segment is less than 1/3.

(b) What is the probability that X is less than 0 or greater than L?

8. The number of seconds a server takes to finish a job is modeled as a random variable X from an unknown
distribution. You would like to be able to guarantee clients that, with high probability, jobs will be finished in
less than or equal to 50 seconds. What is the best guarantee you could give if:

(a) You assume that X has mean 25.

(b) You assume that X has mean 25 and variance 25.

(c) You assume that X ∼ Poi(25). (Hint: use the Normal approximation of the Poisson. Why is it reasonable
to approximate Poi(25) by a normal distribution? It follows from the Central Limit Theorem, since it turns
out that a Poisson random variable with λ = 25 is the sum of 25 independent Poisson random variables
each with λ = 1. See https://onlinecourses.science.psu.edu/stat414/node/180.)

9. A frog starts at position 0 on a line and at each second t jumps Xt cm, where the Xt are all i.i.d. according to the
following probability mass function:

p(−2) = 1/6

p(−1) = 1/3

p(1) = 1/6

p(2) = 1/3

Use the central limit theorem to estimate the probability that, after 100 jumps, the frog is at a negative position.

10. Chebyshev’s inequality implies that the proportion of observations that are less than 3 standard deviations from
the mean is at least p. Determine the value of p.

11. You throw a dart at a circular target of radius r = 5 inches. Your aim is such that the dart is equally likely to hit
any point in the target. For each throw, you win $1 if the dart strikes within 2 inches of the target’s center. Let
W be your total winnings for 100 independent throws. Use the Chernoff bound to get an upper bound on the
probability that you win at least $24. (The Chernoff bound is sometimes given in the form P(X > (1+δ)µ) ≤ . . . ,
but the same bound actually also holds in the form P(X ≥ (1 + δ)µ) ≤ . . . .)

12. Suppose x1, x2, . . . , xn are independent samples from Bin(N, p), where the parameter N is known to you but p is
unknown.

(a) What is the maximum likelihood estimator for p? Don’t forget to prove that it is a maximum of the
likelihood function.

(b) Is your answer to part (a) a biased or unbiased estimator?

13. For any individual x born in Transylvania with a vampire father, there is a 50% chance that x is a vampire,
independently for each birth. These are the only conditions under which a new vampire can be created. 75% of
the Transylvanian males are vampires. Suppose Igor, a man who has lived in Transylvania his whole life, has
three children that are not vampires.

(a) What is the probability that Igor is a vampire?

(b) If Igor has a fourth child, what is the probability that child will be a vampire?
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14. A bridge deck consists of 52 cards divided into 4 suits of 13 ranks each. A bridge hand consists of 13 cards
from a bridge deck. Suppose that the bridge cards are well shuffled and dealt. What is the probability that your
bridge hand is already sorted when you pick it up, given that you have been dealt at least two cards in each of
the 4 suits? By “sorted” I mean that the cards of any one suit are adjacent to each other, and the cards of each
suit are sorted by rank, with ascending ranks either from left to right or from right to left in your hand. The 4
suits can be in any order in your hand, and different suits can sorted in different directions.

15. Suppose x1, x2, . . . , xn are independent, identically distributed samples from the continuous distribution
Unif(0, θ). Consider the estimator θ̂ = 3

n
∑n

i=1 xi of θ. Is θ̂ unbiased? If not, find a constant c such that cθ̂
is unbiased and prove that it is unbiased.

16. Let X be a continuous random variable with probability density function

f (x) =

{
2x , if 0 ≤ x ≤ 1
0 , otherwise .

(a) Find E
[

1
X

]
.

(b) Compute P(X = 0.5).

17. Bob is teaching Alice how to play his new favorite game. In each round, Bob shoots an arrow at the tires of
Alice’s car. He hits with probability p, independent of previous rounds. If he hits a tire, he gets 10 points. If he
misses, he loses 5. Let X be Bob’s score after n rounds.

(a) What is E[X]?

(b) What is Var(X)?

18. Suppose A and B are random, independent, nonempty subsets of {1, 2, . . . , n}, where each nonempty subset is
equally likely to be chosen as A or B. What is P(max(A) = max(B))?

19. Suppose A and B are random, independent (possibly empty) subsets of {1, 2, . . . , n}, where each subset is equally
likely to be chosen as A or B. Consider A∆B = (A∩BC)∪ (B∩AC) = (A∪B)∩ (AC ∪BC), i.e., the set containing
elements that are in exactly one of A and B. Let X be the random variable that is the size of A∆B. What is E[X]?
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