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Random Variables 
 

Suppose we flip a fair coin twice.  What is the sample space Ω? 
 

Ω = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇} 
 

In many cases, we don’t really care whether we got {𝐻𝑇} or {𝑇𝐻} – sometimes all we care about is that we got 

exactly one head.   To do this (in this case and many others), we define a random variable 𝑋 as a numeric function 
of the outcome.  That is, we look at an outcome in the sample space, and we only care about a single representative 
number for each one.  Let’s make this clearer by continuing our example. 
 

Let 𝑋 be the number of heads in 2 coin flips,  𝑋: Ω → Ω𝑋.  We only bother including values that 𝑋 can actually take 

on in Ω𝑋, which we will call the support of a random variable.  In this case, 𝑋: Ω → {0,1,2}.  Remember a random 

variable is a function of the outcomes – that means every outcome 𝜔 in Ω will be mapped to a number. 

𝑋({𝐻𝐻}) = 2 
𝑋({𝐻𝑇}) = 1 

𝑋({𝑇𝐻}) = 1 
𝑋({𝑇𝑇}) = 0 

To describe the probability of each of 𝑋’s possible values, we use a probability mass function (pmf). This simply 
describes the probability of each value the random variable can take on.  From the example, it’s clear that 

𝑃(𝑋 = 2) =
1

4
 

𝑃(𝑋 = 1) =
1

2
 

𝑃(𝑋 = 0) =
1

4
 

This is an acceptable form for a probability mass function if asked for one.  However, sometimes this notation can get 

a bit tedious, so we define a shorthand for 𝑃(𝑋 = 𝑘) as 𝑝𝑋(𝑘) or simply 𝑝(𝑘).  Using this notation, we can rewrite 
the above as 

𝑝𝑋(𝑘) = {

1/4, 𝑘 = 0
1/2, 𝑘 = 1
1/4, 𝑘 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑘 is a dummy variable (any value that 𝑋 can take on)– we could have easily used 𝑥 or any other letter instead.  For 
example, 

𝑝𝑋(𝑥) = {

1/4, 𝑥 = 0
1/2, 𝑥 = 1
1/4, 𝑥 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

We can also omit the subscript 𝑋 if it is clear that the pmf we are talking about is for 𝑋.  For example,  

𝑝(𝑥) = {

1/4, 𝑥 = 0
1/2, 𝑥 = 1
1/4, 𝑥 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Another way to define the support is all the values 𝑥 that 𝑋 takes on such that 𝑝𝑋(𝑥) > 0 (in other words, values 

that actually have nonzero probability).  The support of 𝑋 in this case is Ω𝑋 = {0,1,2}. 
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Sometimes, we are in situations where there are multiple random variables in a question.  Say 𝑋 and 𝑌 are random 

variables, and we write 𝑝(2).  What does this mean?  𝑃(𝑋 = 2) or 𝑃(𝑌 = 2)?  To be clear, we instead write 

𝑝𝑋(2) = 𝑃(𝑋 = 2) or 𝑝𝑌(2) = 𝑃(𝑌 = 2).  It is highly recommended (but not required yet) that you always 
subscript your probability mass functions.   You will have to write subscripts later in this course, so you may as well 
get used to it now. 
 
To summarize, at the beginning we had a full enumeration of the sample space 

 
Ω = {𝐻𝐻, 𝐻𝑇, 𝑇𝐻, 𝑇𝑇} 

 

with 𝑃({𝐻𝐻}) = 𝑃({𝐻𝑇}) = 𝑃({𝑇𝐻}) = 𝑃({𝑇𝑇}) =
1

4
.   

 
Now, since we only care about how many heads we get, we can instead define the probabilities of the outcomes as  
 

𝑝𝑋(𝑘) = {

1/4, 𝑘 = 0
1/2, 𝑘 = 1
1/4, 𝑘 = 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
The point of random variables is to summarize the outcomes of the sample space in a way that is useful. Note that 

∑ 𝑝𝑋(𝑘)𝑘 =
1

4
+

1

2
+

1

4
= 1, as it should.   

 
 

Functions of Random Variables 
 

Consider this contrived example: suppose instead of 𝑋, we were interested in 𝑋3.  𝑋3 is also a random variable since 

𝑋 was a random variable.  What does this mean?  It literally translates to the cube of 𝑋, or the cubed number of 
heads. 
 

𝑋3({𝐻𝐻}) = 8 

𝑋3({𝐻𝑇}) = 1 

𝑋3({𝑇𝐻}) = 1 

𝑋3({𝑇𝑇}) = 0 
 

So we associate {𝐻𝐻} with 23 = 8 since it has 2 heads.  Notice the other values don’t change since 13 = 1 and 

03 = 0.  Now how do we describe the probability mass function for 𝑋3?    
 

𝑝𝑋3(𝑘) = {

1/4, 𝑘 = 0
1/2, 𝑘 = 1
1/4, 𝑘 = 8

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Notice we don’t touch the probabilities at all – just the values.  Notice that the probabilities do not change so they 

still sum to 1.  Now, the 𝑋3 cannot be 2 since there’s no way a cubed number of heads can be 2.  Instead, we 

reassign the probability to the value 23 = 8.  Notice the subscript is especially important in this case as we can 

distinguish between 𝑝𝑋 and 𝑝𝑋3.  The support is also different - Ω𝑋3 = {0,1,8} ≠ {0,1,2} = Ω𝑋. 
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What if two or more values ended up the same?  For example, suppose 𝑌 represents the location of a frog starting at 

the origin who moves one unit either left or right, or not at all.  Suppose he has probability of 1/6 of going left or 

right, and 2/3 of being lazy and not moving.  Then 𝑌 has the following pmf: 
 

𝑝𝑌(𝑘) = {

1/6, 𝑘 = −1
2/3, 𝑘 = 0
1/6, 𝑘 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
Suppose we are interested only in how far the frog ends up, rather than the exact location.  That is, we are interested 

in 𝑊 = |𝑌|, a new random variable. 
 

Then, a trick to find the pmf for 𝑊 is to just directly apply the absolute value function to the values of the pmf.  For 
example: 
 

𝑝𝑊(𝑘)  = {

1/6, 𝑘 = | − 1|
2/3, 𝑘 = |0|
1/6, 𝑘 = |1|

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Notice that, now |−1| = |1| = 1.  In this case, we simply add the probabilities since they were disjoint to get the 
final pmf: 
 

𝑝𝑊(𝑘) = {
2/3, 𝑘 = 0
1/3, 𝑘 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

This should make sense – think about it.  The frog moved one unit away with probability 
1

6
+

1

6
=

1

3
, so 𝑃(𝑊 =

1) = 𝑝𝑊(1) = 1/3.   
 
 
Other examples of random variables: 

 The number of heads in 𝑛 independent flips of a fair coin 

 The number of people who are born every minute 

 The number of flips of a fair coin until I flip a head 

 The amount of time (in minutes) I wait until the next bus 

 The weight (in pounds) of your backpack 
 
Do you notice something different about the last two examples?  They are still random variables, but they can take on 

an uncountable number of values.  I can wait 4.833312 minutes for the next bus, or 𝜋 minutes, or any arbitrary real 

number.  Your backpack could weight 15.3235353 pounds, or 𝑒5 pounds, or any real number.  The first two take 
on finite values, and the third can take on a countably infinite number of values (the size of the natural numbers).  We 
call a random variable discrete if it takes on a countable number of values.  We call a random variable continuous 
if it takes on an uncountable number of values.  
 

The reason we usually write 𝑝𝑋(𝑘) instead of 𝑝𝑋(𝑥) is because 𝑘 is usually interpreted as an integer, whereas we 

think of 𝑥 as being any real number.  However, either is acceptable. 
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Expectation 
 

Suppose we play the following game: you roll a 10 sided die and I pay you based on what you roll.  If you roll a 1 or 

3, I will pay you $9.  If you roll an even number, I will pay you $4.  If you roll anything else (5,7,9), I will pay you 

$6.  Let 𝑋 be the (discrete or continuous?) random variable denoting how much you win from one play of a game.  
How much do you expect to win in a game?   
 

Note that the probability mass function of 𝑋 is 
 

𝑝𝑋(𝑘)  = {

2/10, 𝑘 = 9
5/10, 𝑘 = 4
3/10, 𝑘 = 6

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

And note that ∑ 𝑝𝑋(𝑘)𝑘 =
2

10
+

5

10
+

3

10
= 1. 

 
Maybe it’s too hard to think of how much you expect to win in one game.  Since there are 10 outcomes, let’s think of 
how much you expect to win in 10 games, and then divide that by 10 (why does this make sense?).   
 

Let’s play 10 times.  Then you expect to win $9 exactly twice (when you roll a 1 or 3), $4 5 times (when you roll an 

even), and $6 3 times (when you roll 3,5,7,9).  Then, your expected winning over 10 games is 9 ∗ 2 + 4 ∗ 5 + 6 ∗

3 = 56.  Therefore, your expected winning in 1 game is exactly $5.60.   
 
If we had divided by 10 earlier, we could write 
 

1

10
(9 ∗ 2 + 4 ∗ 5 + 6 ∗ 3) = 9 ∗

2

10
+ 4 ∗

5

10
+ 6 ∗

3

10
= 5.6 

 

This is exactly ∑ 𝑘𝑝𝑋(𝑘)𝑘 .  Notice how we multiplied each possible value of the random variable by its probability. 
This is the definition of expectation – it is a weighted sum of the outcomes of the random variable, weighted by 

their probabilities.  We define 𝑬[𝑿] = ∑ 𝒌𝒑𝑿(𝒌)𝒌 . 
 
 

Let 𝑋 be how much money I win in my first play of this game, and 𝑌 be how much I win in my second play.  Then if 

𝑍 = 𝑋 + 𝑌, 𝑍 would represent the amount of money won in two games.   Since 𝑋 and 𝑌 have the same pmf (why?), 

we expect to win $5.60 in each game – that is, 𝐸[𝑋] = 𝐸[𝑌] = 5.6.  Note that we would not say 𝑋 = 𝑌, since 
they could take on different values, even though they have the same pmf (and therefore expectation). 
 

Something interesting to think about – let 𝑍 = 𝑋 + 𝑌 be the amount of money I win in two plays of this game.  

Would it make sense that I expect to win 2 ∗ $5.60 = $11.20?   That is,    
 

𝐸[𝑍] = 𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌] = 5.6 + 5.6 = 11.2 
 
Yes! This property is called linearity of expectation and will be covered soon. 


