Probabilistic (or Randomized) Algorithms

Factoring and Primality

Is there an efficient algorithm to factor large (say, 1000 digit) integers into their
prime factors? This is a wide open question, one of the most important open
questions in computer science. In 1977, Rivest, Shamir, and Adleman developed a
public-key encryption system now known as RS4, whose security depends on the
hypothesis that there is no efficient algorithm for factoring such large integers. If
there were such an algorithm, RSA and many other cryptographic protocols would
fail.

What about the simpler question of deciding whether such a large integer is prime
or composite? In 1977, the same year RSA was invented and making news,
Solovay and Strassen discovered an algorithm that could determine whether x is
prime in time polynomial in n, the number of digits of x. Their algorithm required
the use of a random number generator. The “catch” was that, with small
probability, the algorithm might report that x is prime even though it is actually
composite; that probability of error could be made as small a positive number as
you like, say 107°,

For 25 years, no one knew how to solve this problem in time polynomial in
without using randomization. Solovay and Strassen’s discovery was big news in
the algorithm community, and researchers began discovering other problems that
could either be solved faster or simpler using random numbers than without.

In 2002, though, it was shown that the primality of x could be determined in time
polynomial in » without using randomization.

Quicksort

Solovay and Strassen weren’t the first to use a random number generator to speed
up an algorithm. A much earlier example was Quicksort, invented by Hoare in

1959. You have probably seen Quicksort, but perhaps not the probabilistic
version:

To sort aq, ay, ..., ay, ifn > 1,

1. Choose p ~ Unif (1,n), that is, a random and uniform integer in [1,n].
2. LetL ={a; | a; < ap},

E= {ai] a; = ap},

G ={a;|a; > a,}
3. Recursively sort and output L.

Output E.
Recursively sort and output R.

What is the running time of this algorithm? If the random choices in step 1 are
very unlucky at every level of recursion, |L| = 0 and |G| = n — 1 and the total
running time is #(n?). What about with ordinary luck? The running time is a
random variable (because of the randomness in step 1), and the expected running
time can be shown to be 0(nlogn). This is asymptotically the fastest sorting can
be done, though it doesn’t beat the running time of Mergesort or Heapsort, which
each require no randomization.

@é,gﬁ Y,‘?(éze 'cz‘ v Mﬂf{ = W
| »’r?xﬁ'} Lot |

e Egg o 2
: s Z><3 XIATPA) + ézx A]P(;D

-—m?@f—(gﬂ; 39@»&-%%)%@)

e Z@g e (X A}@@; o .}wp{ﬂﬂr YPEA). :',f..;.:,

w »z xpr Iy ;% {3 ptetAD) ?{;& >~w
f;ffff, = 5 IXIAP 64) e [x daiiay -

243 3 S fezf13

\fw a—r\u‘vd %W“; R
QWCLSH HD‘“L J l»‘?fcf}

o Seet a,)cz?,, G T,
/ C[\@ose_ 2 < /?»7 s vx’im%ﬂm@» C»\j&\,\.?&h ﬁ]:w[/f“jﬁ/n)

2. Let Yy L‘= a; /cz, <a,
i "Q i~ia a%
Q: |
3 Kszcw@ve Serfow,f?omf?iL
< & - © o = i a’»’\O@éMH @(vx>, |
ipVavTm RN VLM ? sfgf;,,,.f; ik, asbume oy didesd
Lot €. R be T vk =1LL.

o

| et nv. X \Q‘QWMW’\,LU m&@n&eﬂﬂﬁo st a, g, -
A

]f«m)Q = - 1+XR+><n —R. - S
= -1 4 %?(,;+><,_,.p\j : (g“"%‘m@j

=n= 142 E XX ke]%‘-) (ewse

= r—1 +»:1;\% ELX 4 %]

Ene A(Z z,thzceixn 4= J) (Bioerty
=yt ZE[&I

(.’0

_ %E?_Xj = nbh~1)+2 Z tix —j
(NEX _T=h-n6a) 42 2, E (K] Codedfden—sna)
nEDT] —-DEXT] = 22 + 2B Xn §
; W EDG T = -2 +(nanE DX -]

24

eI enr , £l o 2, EDG])

-~

il b

4N
z + sz ‘Y\"Z’I

7
fgaﬁ;+ N Con— |
2 2) el o
NN +\;:iﬁf fhri."
cEX I 07 = 57 SQCHV‘J)SZ/ZW
2. L=2 A=

ED&J < ?.(QA\Y\) (ns = 24,\.,@?\“ g Wi £ Z.Lﬁngﬁg\ +Od/c2m)

5

