Review of Important Distributions

Discrete
Continuous

Discrete Random Variables

Discrete Uniform Distribution

Definition: A random variable that takes any integer value in an interval with equal likelihood

Example: Choose an integer uniformly between 0 and 10

Parameters: integers *a*, *b* (lower and upper bound of interval)

Notation: *X* ~ Unif(*a*,*b*)

Properties:

$$E[X] = \frac{a+b}{2}$$

Var(X) = $\frac{(b-a)(b-a+2)}{12}$
pmf: P(X=k) = $\frac{1}{b-a+1}$ for $k \in \{a, a+1, ..., b\}$

Bernoulli Distribution

Definition: value 1 with probability p, 0 with probability 1-p

Example: coin toss ($p = \frac{1}{2}$ for fair coin)

Parameters: *p*

Notation: *X* ~ Ber(*p*)

Properties:

E[X] = p

 $Var(\mathbf{X}) = p(1-p)$

pmf: see Definition above

Binomial Distribution

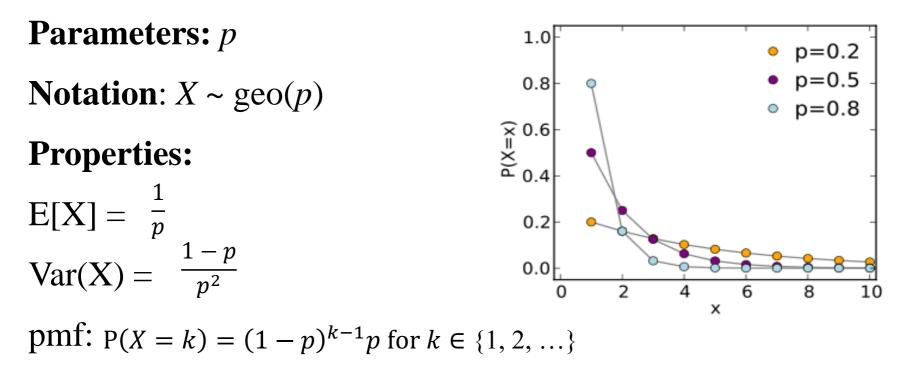
- **Definition:** sum of *n* independent Bernoulli trials, each with parameter *p*
- Example: number of heads in 10 independent coin tosses

0.25 **Parameters:** *n*, *p* p=0.5 and n=20 p=0.7 and n=20 0.20 p=0.5 and n=40 Notation: $X \sim Bin(n, p)$ 0.15**Properties:** 0.10 E[X] = np0.05 0.00 Var(X) = np(1-p)30 0 10 20 40 pmf: $P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$ for $k \in \{0, 1, ..., n\}$

Geometric Distribution

Definition: number of independent Bernoulli trials with parameter *p* until and including first success (so *X* can take values 1, 2, 3, ...)

Example: # of coins flipped until first head



Hypergeometric Distribution

Definition: number of successes in *n* draws (without replacement) from *N* items that contain *K* successes in total

Example: An urn has 10 red balls and 10 blue balls. What is the probability of drawing 2 red balls in 4 draws?

Parameters: n, N, K

Properties:

$$E[X] = n \cdot \frac{K}{N}$$

Var(X) = $n \cdot \frac{K(N-K)(N-n)}{N^2(N-1)}$
pmf: $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$

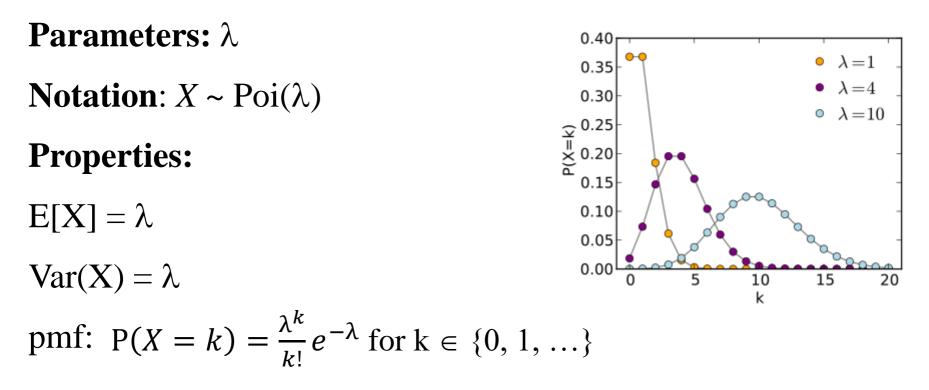
Think about the pmf; we've been doing it for weeks now: ways-to-choose-successes times ways-tochoose-failures divided by ways-to-choose-all.

Also, consider that the binomial dist. is the with-replacement analog of this.

Poisson Distribution

Definition: number of events that occur in a unit of time, if those events occur independently at an average rate λ per unit time

Example: # of cars at traffic light in 1 minute, # of deaths in 1 year by horse kick in Prussian cavalry



Continuous Random Variables

Continuous Uniform Distribution

- **Definition:** A random variable that takes any real value in an interval with equal likelihood
- **Example:** Choose a real number (with infinite precision) between 0 and 10

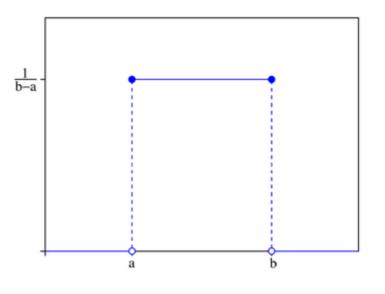
Parameters: *a*, *b* (lower and upper bound of interval)

Notation: *X* ~ Uni(*a*,*b*)

Properties:

 $E[X] = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$

pdf: $f(x) = \frac{1}{b-a}$ if $x \in [a, b], 0$ otherwise



Exponential Distribution

Definition: Time until next event in Poisson process **Example:** How long until the next soldier is killed by horse kick? **Parameters:** λ , the average number of events per unit time **Notation**: $X \sim \text{Exp}(\lambda)$ 1.6 $\lambda = 0.5$ 1.4 **Properties:** $\lambda = 1$ 1.2 $\lambda = 1.5$ 1.0 $E[X] = \frac{1}{\lambda}$ × 0.8 0.6 0.4 $Var(X) = \frac{1}{\lambda^2}$ 0.2 0.0L 1 2 x

pdf: $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, 0 for x < 0

Normal Distribution

Description: Classic bell curve

Example: Quantum harmonic oscillator ground state (exact), Human heights, binomial random variables (approximate)

Parameters: μ , σ^2

```
Notation: X \sim N(\mu, \sigma^2)
```

Properties:

 $E[X] = \mu$

 $Var(X) = \sigma^2$

pdf:
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

