
Chapter 9: Applications to Computing

9.8: Multi-Armed Bandits
Slides (Google Drive) Starter Code (GitHub)

Actually, for this application of bandits, we will do the problem setup before the motivation. This is because
modelling problems in this bandit framework may be a bit tricky, so we’ll kill two birds with one stone. We’ll
also see how to do “Modern Hypothesis Testing” using bandits!

9.8.1 The Multi-Armed Bandit Framework

Imagine you go to a casino in Las Vegas, and there K = 3 different slot machines (“Bandits” with “Arms”).
(They are called bandits because they steal your money.)

You bought some credits and can pull any slot machines, but only a total of T = 100 times. At each time
step t = 1, . . . , T , you pull arm at ∈ {1, 2, . . . ,K} and observe a random reward. Your goal is to maximize
your total (expected) reward after T = 100 pulls! The problem is: at each time step (pull), how do I decide
which arm to pull based on the past history of rewards?

We make a simplifying assumption that each arm is independent of the rest, and has some reward dis-
tribution which does NOT change over time.

Here is an example you may be able to do: don’t overthink it!

Example(s)

If the reward distributions are given in the image below for the K = 3 arms, what is the best strategy
to maximize your expected reward?

1

https://docs.google.com/presentation/d/1yENW3PReelIcoho7WMf4j1oUiFxxggpl4AVp7ZEgbJ0/edit
https://github.com/alextsun/prob_stat_for_cs/tree/main/starter_code/9.8_bandits

2 Probability & Statistics with Applications to Computing 9.8

Solution We can just compute the expectations of each from the distributions handout. The first machine
has expectation λ = 1.36, the second has expectation np = 4, and the third has expectation µ = −1. So to
maximize our total reward, we should just always pull arm 2 because it has the best expected reward! There
would be no benefit in pulling other arms at all.

So we’re done right? Well actually, we DON’T KNOW the reward distributions at all! We must estimate all
K expectations (one per arm), WHILE simultaneously maximizing reward! This is a hard problem because
we know nothing about the K reward distributions. Which arm should we pull then at each time step? Do
we pull arms we know to be “good” (probably), or try other arms?

This bandit problem allows us to formally model this tradeoff between:

• Exploitation: Pulling arm(s) we know to be “good”.

• Exploration: Pulling less-frequently pulled arms in the hopes they are also “good” or even better.

In this section, we will only handle the case of Bernoulli-bandits. That is, the reward of each arm
a ∈ {1, . . . ,K} is Ber(pa) (i.e., we either get a reward of 1 or 0 from each machine, with possibly different
probabilities). Observe that the expected reward of arm a is just pa (expectation of Bernoulli).

The last thing we need to talk about when talking about bandits is regret. Regret is the difference between

• The best possible expected reward (if you always pulled the best arm).

• The actual reward you got over T arm-pulls.

Let p∗ = arg maxi∈{1,2,...,K} pi denote the highest expected reward from one of the K arms. Then, the regret
at time T is

Regret(T) = Tp∗ − Reward(T)

where Tp∗ is the reward from the best arm if you pull it T times, and Reward(T) is your actual reward after
T pulls. Sometimes it’s easier to think about this in terms of average regret (divide everything by T).

Avg-Regret(T) = p∗ − Reward(T)

T

We ideally want Avg-Regret(T) → 0 as T → ∞. In fact, minimizing (average) regret is equivalent
to maximizing reward (why?). The reason we defined this is because our graphs of the plots of different

9.8 Probability & Statistics with Applications to Computing 3

algorithms we studied are best compared on such a plot with regret on the y-axis and time on the x-axis. If
you look deeply at the theoretical guarantees (we won’t), a lot of the times they upper-bound the regret.

The below summarizes and formalizes everything above into this so-called “Bernoulli Bandit Framework”.

Algorithm 1 (Bernoulli) Bandit Framework

1: Have K arms, where pulling arm i ∈ {1, . . . ,K} gives Ber(pi) reward . pi’s all unknown.
2: for t = 1, . . . , T do
3: At time t, pull arm at ∈ {1, . . . ,K}. . How do we do decide which arm?
4: Receive reward rt ∼ Ber(pat). . Reward is either 1 or 0.

The focus for the rest of the entire section is: “how do we choose which arm”?

9.8.2 Motivation

Before we talk about that though, we’ll discuss the motivation as promised.

As you can see above, we can model a lot of real-life problems as a bandit problem. We will learn two
popular algorithms: Upper Confidence Bound (UCB) and Thompson Sampling. This is after we discuss
some “intuitive” or “naive” strategies you may have yourself!

We’ll actually call on a lot of our knowledge from Chapters 7 and 8! We will discuss maximum likelihood,
maximum a posteriori, confidence intervals, and hypothesis testing, so you may need to brush up on those!

4 Probability & Statistics with Applications to Computing 9.8

9.8.3 Algorithm: (Naive) Greedy Strategies

If this were a lecture, I might ask you for any ideas you may have? I encourage you to think for a minute
before reading the “solution” below.

One strategy may be: pull each arm M times in the beginning, and then forever pull the best arm! This is
described formally below:

Algorithm 2 Greedy (Naive) Strategy for Bernoulli Bandits

1: Choose a number of times M to pull each arm initially, with KM ≤ T .
2: for i = 1, 2, . . . ,K do
3: Pull arm i M times, observing iid rewards ri1, . . . , riM ∼ Ber(pi).

4: Estimate p̂i =

∑M
j=1 rij

M
. . Maximum likelihood estimate!

5: Determine best (empirical) arm a∗ = arg maxi∈{1,2,...,K} p̂i. . We could be wrong...
6: for t = KM + 1,KM + 2, . . . , T do: . For the rest of time...
7: Pull arm at = a∗. . Pull the same arm for the rest of time.
8: Receive reward rt ∼ Ber(pat).

Actually, this strategy is no good, because if we choose the wrong best arm, we would regret it for the rest
of time! You might then say, why don’t we increase M? If you do that, then you are pulling sub-optimal
arms more than you should, which would not help us in maximizing reward...The problem is: we did all of
our exploration FIRST, and then exploited our best arm (possibly incorrect) for the rest of time. Why don’t
we try to blend in exploration more? Do you have any ideas on how we might do that?

This following algorithm is called the ε-Greedy algorithm, because it explores with probability ε at each
time step! It has the same initial setup: pull each arm M times to begin. But it does two things better than
the previous algorithm:

1. It continuously updates an arm’s estimated expected reward when it is pulled (even after the KM
steps).

2. It explores with some probability ε (you choose). This allows you to choose in some quantitative way
how to balance exploration and exploitation.

See below!

9.8 Probability & Statistics with Applications to Computing 5

Algorithm 3 ε-Greedy Strategy for Bernoulli Bandits

1: Choose a number of times M to pull each arm initially, with KM ≤ T .
2: for i = 1, 2, . . . ,K do
3: Pull arm i M times, observing iid rewards ri1, . . . , riM ∼ Ber(pi).

4: Estimate p̂i =

∑M
j=1 rij

M
.

5: for t = KM + 1,KM + 2, . . . , T do:
6: if Ber(ε) == 1: then . With probability ε, explore.
7: Pull arm at ∼ Unif(1,K) (discrete). . Choose a uniformly random arm.
8: else . With probability 1− ε, exploit.
9: Pull arm at = arg maxi∈{1,2,...,K} p̂i. . Choose arm with highest estimated reward.

10: Receive reward rt ∼ Ber(pat
).

11: Update p̂at
(using newly observed reward rt).

However, we can do much much better! Why should we explore each arm uniformly at random, when we
have a past history of rewards? Let’s explore more the arms that have the potential to be really good! In an
extreme case, if there is an arm with average reward 0.01 after 100 pulls and an arm with average reward
0.6 after only 5 pulls, should we really both explore each equally?

9.8.4 Algorithm: Upper Confidence Bound (UCB)

A great motto for this algorithm would be “optimism in the face of uncertainty”. The idea of the greedy
algorithm was simple: at each time step, choose the best arm (arm with highest p̂a). The algorithm we
discuss now is very similar, but turns out to work a lot better: construct a confidence interval for p̂a for each
arm, and choose the one with the highest POTENTIAL to be best. That is, suppose we had three arms
with the following estimates and confidence intervals at some time t:

• Arm 1: Estimate is p̂1 = 0.75. Confidence interval is [0.75− 0.10, 0.75 + 0.10] = [0.65, 0.85].

• Arm 2: Estimate is p̂2 = 0.33. Confidence interval is [0.33− 0.25, 0.33 + 0.25] = [0.08, 0.58].

• Arm 3: Estimate is p̂3 = 0.60. Confidence interval is [0.60− 0.29, 0.60 + 0.29] = [0.31, 0.89].

Notice all the intervals are centered at the MLE. Remember the intervals may have different widths, because
the width of a confidence interval depends on how many times it has been pulled (more pulls means more
confidence and hence narrower interval). Review 8.1 if you need to recall how we construct them.

The greedy algorithm from earlier at this point in time would choose arm 1 because it has the highest
estimate (0.75 is greater than 0.33 and 0.60). But our new Upper Confidence Bound (UCB) algorithm
will choose arm 3 instead, as it has the highest possibility of being the best (0.89 is greater than 0.85 and
0.58).

6 Probability & Statistics with Applications to Computing 9.8

Algorithm 4 UCB1 Algorithm (Upper Confidence Bound) for Bernoulli Bandits

1: for i = 1, 2, . . . ,K do
2: Pull arm i once, observing ri ∼ Ber(pi).
3: Estimate p̂i = ri/1. . Each estimate p̂i will initially either be 1 or 0.

4: for t = K + 1,K + 2, . . . , T do:

5: Pull arm at = arg maxi∈{1,2,...,K}

(
p̂i +

√
2 ln(t)

Nt(i)

)
, where Nt(i) is the number of times arm i was

pulled before time t.
6: Receive reward rt ∼ Ber(pat

).
7: Update Nt(at) and p̂at (using newly observed reward rt).

See how exploration is “baked in” now? As we pull an arm more and more, the upper confidence bound
decreases. The less frequently pulled arms have a chance to have a higher UCB, despite having a lower
point estimate! After the next algorithm we examine, we will visually compare and contrast the results. But
before we move on, let’s take a look at this visually.

Suppose we have K = 5 arms. The following picture depicts at time t = 10 what the confidence intervals
may look like. The horizontal lines at the top of each arm represent the upper confidence bound, and the red
dots represent the TRUE (unknown) means. The center of each confidence interval are the ESTIMATED
means.

Pretty inaccurate at first right? Because it’s so early on, our estimates are expected to be bad.

Now see what happens as t gets larger and larger!

9.8 Probability & Statistics with Applications to Computing 7

Notice how the interval for the best arm (arm 5) keeps shrinking, and is the smallest one because it was pulled
(exploited) so much! Clearly, arm 1 was terrible and so our estimate isn’t perfect; it has the widest width
since we almost never pulled it. This is the idea of UCB: basically just greedy but using upper confidence
bounds!

You can go to the slides linked at the top of the section if you would like to see a step-by-step of the first
few iterations of this algorithm (slides 64-86).

Note if just deleted the +

√
2 ln(t)

Nt(i)
in the 5th line of the algorithm, it would reduce to the greedy!

9.8.5 Algorithm: Thompson Sampling

This next algorithm is even better! It takes this idea of MAP (prior and posterior) into account, and ends up
working extremely well. Again, we’ll see how a slight change would reduce this back to the greedy algorithm.

We will assume a Beta(1, 1) (uniform) prior on each unknown probability of reward. That is, we can treat
our pi’s as continuous probability distributions. Remember that though with this uniform prior, the MAP
and the MLE are equivalent though (pretend we saw 1− 1 = 0 heads and 1− 1 = 0 failures). However, we
will not be using the posterior distribution just to get the mode, we will SAMPLE from it! Here’s the idea
visually.

Let’s say we have K = 3 arms, and are at the first time step t = 1. We will start each arm off with a
Beta(αi = 1, βi = 1) prior and update αi, βi based on the rewards we observe. We’ll show the algorithm
first, then use visuals to walk through it.

8 Probability & Statistics with Applications to Computing 9.8

Algorithm 5 Thompson Sampling Algorithm for Beta-Bernoulli Bandits

1: For each arm i ∈ {1, . . . ,K}, initialize αi = βi = 1. . Set Beta(αi, βi) prior for each pi.
2: for t = 1, 2, . . . , T do:
3: For each arm i, get sample si,t ∼ Beta(αi, βi). . Each is a float in [0, 1].
4: Pull arm at = arg maxi∈{1,2,...,K} si,t. . This “bakes in” exploration!
5: Receive reward rt ∼ Ber(pat

).
6: if rt == 1 then αat

← αat
+ 1. . Increment number of “successes”.

7: else if rt == 0 then βat ← βat + 1. . Increment number of “failures”.

So as I mentioned earlier, each pi is a RV which starts with a Beta(1, 1) distribution. For each arm i, we
keep track of αi and βi, where αi − 1 is the number of successes (number of times we got a reward of 1),
and βi − 1 is the number of failures (number of times we got a reward of 0).

For this algorithm, I would highly recommend you go to the slides linked at the top of the section if you
would like to see a step-by-step of the first few iterations of this algorithm (slides 94-112). If you don’t want
to, we’ll still walk through it below!

Let’s again suppose we have K = 3 arms. At time t = 1, we sample once from each arm’s Beta distribution.

We suppose the true pi’s are 0.5, 0.2, and 0.9 for arms 1, 2, and 3 respectively (see the table). Each arm
has αi and βi, initially 1. We get a sample from each arm’s Beta distribution and just pull the arm with
the largest sample! So in our first step, each has the same distribution Beta(1, 1) = Unif(0, 1), so each arm
is equally likely to be pulled. Then, because arm 2 has the highest sample (of 0.75), we pull arm 2. The
algorithm doesn’t know this, but there is only a 0.2 chance of getting a 1 from arm 2 (see the table), and so
let’s say we happen to observe our first reward to be zero: r1 = 0.

Consistent with our Beta random variable intuition and MAP, we increment our number of failures by 1 for
arm 2 only.

9.8 Probability & Statistics with Applications to Computing 9

At the next time step, we do the same! Sample from each arm’s Beta and choose the arm with the highest
sample. We’ll see it for a more interesting example below after skipping a few time steps.

Now let’s say we’re at time step 4, and we see the following chart. Below depicts the current Beta densities
for each arm, and what sample we got from each.

We can see from the αi’s and βi’s that we still haven’t pulled arm 1 (both parameters are still at 1), we pulled
arm 2 and got a reward of 0 (β2 = 2), and we pulled arm 3 twice and got one 1 and one 0 (α3 = β3 = 2).
See the density functions below: arm 1 is equally likely to be any number in [0, 1], whereas arm 2 is more
likely to give a low number. Arm 3 is more certain of being in the center.

You can see that Thompson Sampling just uses this ingenious idea of sampling rather than just tak-
ing the MAP, and it works great! We’ll see some comparisons below between UCB and Thompson sampling.

Note that with a single-line change, instead of sampling in line 3, if we just took the MAP (which equals the
MLE because of our uniform prior), we would again revert back to the greedy algorithm! The exploration
comes from the sampling, which works out great for us!

9.8.6 Comparison of Methods

See the UCB and Thompson Sampling’s average regret over time:

10 Probability & Statistics with Applications to Computing 9.8

It might be a bit hard to see, but notice Thompson sampling’s regret got close to 0 a lot faster than UCB.
UCB happened around time 5000, and TS happened around time 2000. The reason why Thompson sampling
might be “better” is unfortunately out of scope.

Below is my favorite visualization of all. On the x-axis we have time, and on the y-axis, we have the
proportion of time each arm was pulled (there were K = 5 arms). Notice how arm 2 (green) has the highest
true expected reward at 0.89, and how quickly Thompson sampling discovered it and starting exploiting it.

9.8.7 Modern Hypothesis Testing

Not only do bandits solve all the applications we talked about earlier, it actually provides a modernized way
to conduct hypothesis tests.

Let’s say a large tech company wants to experiment releasing a new feature/modification.

They assign

9.8 Probability & Statistics with Applications to Computing 11

• 99% of population to control group (current feature)

• 1% to experimental group (new feature).

This has the following consequences:

• If the new feature is “bad”, very small percentage of the population sees it, so company protects itself.

• If the new feature is “good”, very small percentage of the population sees it, so company may lose
revenue.

We would perform a two-sample hypothesis test (called an “A/B Test” in industry) now to compare the
means of some metric we cared about (click-through rate for example), and determine whether we could
reject the null hypothesis and statistically prove that the new feature performs better. Can we do better
though? Can we adaptively assign subjects to each group based on how each is performing rather than
deciding at the beginning? Yes, let’s use bandits!

Let’s use the Bernoulli-bandit framework with just K = 2 arms:

• Arm 1: Current Feature

• Arm 2: New feature

When feature is requested by some user, use Multi-Armed Bandit algorithm to decide which feature to show!
We can have any number of arms.

Here are the benefits and drawbacks of using Traditional A/B Testing vs Multi-Armed bandits. Each has
their own advantages, and you should carefully consider which approach to take before arbitrarily deciding!

When to use Traditional A/B Testing:

• Need to collect data for critical business decisions.

• Need statistical confidence in all your results and impact. Want to learn even about treatments that
didn’t perform well.

• The reward is not immediate (e.g., if drug testing, don’t have time to wait for each patient to finish
before experimenting with next patient).

• Optimize/measure multiple metrics, not just one.

When to use Multi-Armed Bandits:

1. No need for interpreting results, just maximize reward (typically revenue/engagement)

2. The opportunity cost is high (if advertising a car, losing a conversion is ≥$20,000)

3. Can add/remove arms in the middle of an experiment! Cannot do with A/B tests.

The study of Multi-Armed Bandits can be categorized as:

• Statistics

• Optimization

• “Reinforcement Learning” (subfield of Machine Learning)

	The Multi-Armed Bandit Framework
	Motivation
	Algorithm: (Naive) Greedy Strategies
	Algorithm: Upper Confidence Bound (UCB)
	Algorithm: Thompson Sampling
	Comparison of Methods
	Modern Hypothesis Testing

