
Chapter 9: Applications to Computing

9.6: Markov Chain Monte Carlo (MCMC)
Slides (Google Drive) Starter Code (GitHub)

9.6.1 Motivation

Markov Chain Monte Carlo (MCMC) is a technique which can be used to solve hard optimization
problems (among other things). In this section, we’ll design MCMC algorithms to solve the following two
problems, and you will be able to solve many more yourself!

• The Knapsack Problem: Suppose you have a knapsack which has some maximum weight capacity.
There are n items with weights w1, . . . , wn > 0 and values v1, . . . , vn > 0, and we want to choose the
subset of them that maximizes the total value subject to the weight constraint of the knapsack. How
can we do this?

• The Travelling Salesman Problem (TSP): Suppose you want to find the best route (minimizing
total distance travelled) between the 50 U.S. state capitals that we want to visit! A valid route starts
and ends in the same state capital, and visits each capital exactly once (this is known as the TSP,
and is known to be NP-Hard). We will design an MCMC algorithm for this as well!

As the name suggests, this technique depends a bit on the idea of Markov Chains. Most of this section
then will actually be building up the foundations of Markov Chains, and MCMC will follow soon after. In
fact, you could definitely understand and code up the algorithm without learning this math, but if you care
to know how and why it works (you should), then it is important to learn first!

9.6.2 Markov Chains

Before we define Markov chains, we must define what a stochastic process is.

Definition 9.6.1: Discrete-Time Stochastic Process

A discrete-time stochastic process (DTSP) is a sequence of random variables X0, X1, X2, . . .
where Xt is the value at time t.

Here are some examples:

• The temperature in Seattle each day. X0 can be the temperature today, X1 tomorrow, and so on.

• The price of Google stock at the end of each year. X0 can be the final price at the end of the year it
IPO’d, X1 the next, and so on.

• The number of people who come to my store each day. X0 is the number of people who came on the
first day, X1 on the second, and so on.

Consider the following random walk on the graph below. You’ll see what that means through an example!

1

https://docs.google.com/presentation/d/1dEgtoUXGCS_iU_CqJXV452NgDUrznGRYFAOSmIWIAPc/edit
https://github.com/alextsun/prob_stat_for_cs/tree/main/starter_code/9.6_mcmc

2 Probability & Statistics with Applications to Computing 9.6

Suppose we start at node 1, and at each time step, independently step to a neighboring node with equal
probability.

For example, X0 = 1 since at time t = 0, we are at node 1. Then, X1 can be either 2 or 3 (but not 4 or 5
since not neighbors of node 1). And so on. So each Xt just tells us the position we are at at time t, and is
always in the set {1, 2, 3, 4, 5} (for our example anyway).

This DTSP actually has a lot of structure, and is actually an example of a special type of DTSP called a
Markov Chain: can you think about how this particular setup provides a lot of additional constraints over
a normal DTSP?

Here are three key properties of a Markov Chain, which we will formalize immediately after:

1. We only have finitely many states (5 in our example: {1, 2, 3, 4, 5}). (The stock price or temperature
example earlier could be any real number).

2. We don’t care about the past, given the present. That is, the distribution of where we go next
ONLY depends on where we are currently, and not any past history.

3. The transition probabilities are the same at each step (stationary). That is, if we are at node 1 at
time t = 0 or t = 152, we are always equally likely to go to node 2 or 3).

Definition 9.6.2: Markov Chain

A Markov Chain is a special DTSP with the following three additional properties:

1. The state space S = {s1, . . . , sn} is finite (or countably infinite), so that each Xt ∈ S.

2. Satisfies the Markov property: the future is (conditionally) independent of the past given
the present. Mathematically,

P (Xt+1 = xt+1 | X0 = x0, X1 = x1, . . . , Xt = xt) = P (Xt+1 = xt+1 | Xt = xt)

3. Has stationary transition probabilities. That is, we always transition from state si to sj with
probability independent of the current time. Hence, due to this property and the previous, the
transitions are governed by n2 probabilities: the probability of transitioning to one of n current
states to one of n next states. These are stored in a square n × n transition probability
matrix (TPM) P , where Pij = P (Xt+1 = sj | Xt = si) is the probability of transitioning
from si → sj for any and every time t.

If you’re a bit confused right now, especially with that last bullet point, this is totally normal and means you
are paying attention! Let’s construct the TPM for the graph example earlier to see what it means exactly.

9.6 Probability & Statistics with Applications to Computing 3

9.6.2.1 The Transition Probability Matrix (TPM)

Since we have 5 states, our TPM P will be 5 × 5. We’ll fill out the first row first, which represents the
probability of going from state s1 to any of the other 5 states.

For example, the second entry of the first row is: given that Xt = 1 (we are in state 1 at some time t), what
is the probability of going to state 2 next Xt+1 = 2? It’s 1/2 because from state 1, we are equally likely to
go to state 2 or 3. It isn’t possible to go to states 1, 4, and 5, and that’s why their respective entries are 0.

Now, how about the second row?

From state 2, we can only go to states 1 and 4 as you can see from the graph and the TPM. Try filling out
the remaining three rows yourself! These images may help:

4 Probability & Statistics with Applications to Computing 9.6

Our final answer is:

P =


0 1/2 1/2 0 0

1/2 0 0 1/2 0
1/2 0 0 1/2 0
0 1/3 1/3 0 1/3
0 0 0 1 0


Note that in the last row, from state 5, we MUST go to state 4, and so P54 = 1 and the rest of the row
has zero probability. Also note that each ROW sums to 1, but there is no such constraint on the columns.
That’s because this is secretly a joint PMF right? Given we are in some state si (Xt = si), the probabilities
of going to the next state Xt+1 must sum to 1.

9.6.2.2 Computing Probabilities

The TPM is absolutely crucial; in fact, it defines a Markov chain uniquely. But how can we use it to
compute probabilities? The notation is honestly one of the hardest parts of Markov chains. We’ll continue
to do examples until we are ready for MCMC.

Example(s)

Now let’s talk about how to compute some probabilities we may be interested in. Nothing here is
“new”: it is all based on your core probability knowledge from the previous chapters! Let’s say we
want to find out the probability we end up at state 5 after two time steps, starting from state 3. That
is, compute P (X2 = 5 | X0 = 3). Try to do come up with an “intuitive” answer first, and then show
your work formally.

Solution You might be able to hack your way around to a solution since it is only two time steps: something
like

1

2
· 1

3

Intuitively, we can either go to state 4 or 1 from state 3 with equal probability. If we went to state 1, there’s
no chance we make it to state 5. If we went to state 4, there’s a 1/3 chance we go to state 5. So our answer
is 1/2 · 1/3 = 1/6. This is just the LTP conditioning on possible middle states!

Now we’ll write this out more generally. This LTP will be a conditional form though: the LTP says that if
Bi’s partition the sample space:

P (A) =
∑
i

P (A | Bi)P (Bi)

But what about if we wanted P (A | C)? We just condition everything on C as well to get:

P (A | C) =
∑
i

P (A | Bi, C)P (Bi | C)

This gives (take Bi to be the event X1 = i: the partition is of size 5):

P (X2 = 5 | X0 = 3) =

5∑
i=1

P (X2 = 5 | X0 = 3, X1 = i)P (X1 = i | X0 = 3) [LTP]

=

5∑
i=1

P (X2 = 5 | X1 = i)P (X1 = i | X0 = 3) [Markov property]

9.6 Probability & Statistics with Applications to Computing 5

The second equation comes because the probability of X2 given both the positions X0 and X1 only depends
on X1 right? Once we know where we are currently, we can forget about the past. But now, we can zero
out several of these because P (X1 = i | X0 = 3) = 0 for i = 2, 3, 5. So we are left with just 2 of the 5 terms:

= P (X2 = 5 | X1 = 1)P (X1 = 1 | X0 = 3) + P (X2 = 5 | X1 = 4)P (X1 = 4 | X0 = 3)

If you have the TPM P (we have this above), try looking up the entries to see if you get the same answer!

= P15P31 + P45P34 = 0 · 1

2
+

1

3
· 1

2
=

1

6

9.6.2.3 The Stationary Distribution

Markov chains have deep ties to not only probability, but also to linear algebra. If you haven’t taken a linear
algebra class, it’s okay; we’ll explain everything we need for our application here (it’s not too much since
we’re not going too deep). All we’ll assume is that you know what a matrix and a vector are.

Back to our random walk example: suppose we weren’t sure where we started. That is, let the vector

v = (0.25, 0.45, 0.15, 0.05, 0.10)

be such that P (X0 = i) = vi, where vi is the ith element of v (these probabilities sum to 1, because we must
start in one of these 5 positions). Think of this vector v as our belief distribution of where we are at time
t = 0. Let’s compute vP , the matrix-product of v and P , the transition probability matrix. We’ll see what
comes out of it after computing and interpreting it! If you haven’t taken linear algebra yet, don’t worry: vP
is the following 5-dimensional row vector:

vP =

(
5∑

i=1

Pi1vi,

5∑
i=1

Pi2vi,

5∑
i=1

Pi3vi,

5∑
i=1

Pi4vi,

5∑
i=1

Pi5vi

)

What does vP represent? Let’s focus on the first entry, and substitute vi = P (X0 = i) and Pi1 =
P (X1 = 1 | X0 = i) (the probability of going from i→ 1). We actually get (by LTP over initial states):

5∑
i=1

Pi1vi =

5∑
i=1

P (X1 = 1 | X0 = i)P (X0 = i) = P (X1 = 1)

The second entry is very similar:

5∑
i=1

Pi2vi =

5∑
i=1

P (X1 = 2 | X0 = i)P (X0 = i) = P (X1 = 2)

This is an interesting pattern that holds for the next three entries as well! In fact, the i-th entry of vP is
just P (X1 = i), so overall, the vector vP represents your belief distribution at the next time step!
That is, right-multiplying by the transition matrix P literally transitions your belief distribution from one
time step to the next.

We can also see that for example vP 2 = (vP)P is your belief of where you are after 2 time steps, and by
induction, vPn is your belief of where you are after n time steps.

A natural question might be then, does vPn have a limit as n→∞? That is, after a long time, is there a belief
distribution (5-dimensional row vector) π such that it never changes again? The answer is unfortunately:
it depends. We won’t go into the technical details of when it does and doesn’t exist (search “Fundamental
Theorem of Markov Chains” if you are interested), but this leads us to the following definition:

6 Probability & Statistics with Applications to Computing 9.6

Definition 9.6.3: Stationary Distribution of a Markov Chain

The stationary distribution of a Markov Chain with n states (if one exists), is the n-dimensional
row vector π (representing a probability distribution: entries which are nonnegative and sum to 1),
such that

πP = π

Intuitively, it means that the belief distribution at the next time step is the same as the distribution
at the current. This typically happens after a “long time” (called the mixing time) in the process,
meaning after lots of transitions were taken.

We’re going to see an example of this visually, which will also help us build our final piece of intuition for
MCMC. Consider the Markov Chain we’ve been using throughout this section:

Here is the distribution v that we’ll start with. Our Markov Chain happens to have a stationary distribution,
so we’ll see what happens as we take vPn for n→∞ visually.

v = (0.25, 0.45, 0.15, 0.05, 0.10)

Here is a heatmap of it visually:

Figure 9.6.1: Belief Distribution v at n = 0

You can see from the key that darker values mean lower probabilities (hence 4 and 5 are very dark), and
that 2 is the lighest value since it has the highest probability.

9.6 Probability & Statistics with Applications to Computing 7

We’ll then show the distribution after 1 step, 5 steps, 10 steps, and 100 steps. Before we continue, what
do you think the fifth entry will look like after one time step, the probability of being in node 5? Actually,
there is only one way to get to node 5, and that’s from node 4, which we start in with probability only 0.05.
From there, only a 1/3 chance to get to node 5, so node 5 will only have 0.05/3 = 1/60 probability at time
step 1 and hence be super dark.

Figure 9.6.2: Belief Distribution vP at n = 1

Figure 9.6.3: Belief Distribution vP 5 at n = 5

Figure 9.6.4: Belief Distribution vP 10 at n = 10

Figure 9.6.5: Belief Distribution vP 100 at n = 100

It turns out that after just n = 100 time steps, we start getting the same distribution over and over again
(see t = 10 and t = 100: there’s already almost no difference)! This limiting value of vPn is the stationary
distribution!

π = lim
n→∞

vPn = (0.12, 0.28, 0.28, 0.18, 0.14)

Suppose π = vP 100 above. Once we find π such that πP = π for the first time, that means that if we
transition again, we get

πP 2 = (πP)P = πP = π

(applying the equality πP = π twice). That means, by just running the Markov Chain for several
time steps, we actually reached our stationary distribution! This is the most crucial observation
for MCMC.

8 Probability & Statistics with Applications to Computing 9.6

9.6.3 Markov Chain Monte Carlo (MCMC)

This brings us to our strategy for Markov Chain Monte Carlo. Again, remember that no matter where
we start with distribution v, by simulating the Markov Chain many steps, we will eventually reach the
stationary distribution π = limn→∞ vPn. Meaning, if we start in some state at simulate the chain for a large
number of steps (randomly choosing the next transition), it will give us a sample from the stationary
distribution.

Actually, MCMC is generally a technique to sample from a hard distribution that we can’t explicitly write
out. Oftentimes we can’t compute vPn for n very large because a Markov Chain usually has way too many
states (5 is nothing). Imagine how long it would take a computer to compute vP 100 even if there were 1000
states (1000× 1000 matrix P). We’ll see how we can take advantage of this amazing fact below!

Definition 9.6.4: Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a technique which can be used to hard optimization
problems (though generally it is used to sample from a distribution). The general strategy is as
follows:

I. Define a Markov Chain with states being possible solutions, and (implicitly defined) transition
probabilities that result in the stationary distribution π having higher probabilities on “good”
solutions to our problem. We don’t actually compute π, but we just want to define the Markov
Chain such that the stationary distribution would have higher probabilities on more desirable
solutions.

II. Run MCMC (simulate the Markov Chain for many iterations until we reach a “good” state/-
solution). This means: start at some initial state, and transition according to the transition
probability matrix (TPM) for a long time. This will eventually take us to our stationary dis-
tribution which has high probability on “good” solutions!

Again, if this doesn’t make sense yet, that’s totally fine. We will apply this two-step procedure to two
examples below so you can understand better how it works!

9.6.3.1 Knapsack Problem

Definition 9.6.5: Knapsack Problem

The 0-1 Knapsack Problem is defined as follows:

• Given n items with weights w1, . . . , wn > 0 and values v1, . . . , vn > 0, and a knapsack with
weight limit W .

• Goal: Find the most valuable subset of items which satisfy the weight constraint of the knapsack!

More formally, we let x = (x1, . . . , xn) ∈ {0, 1}n be the n-dimensional vector of whether or not we
take each item (1 means take, 0 means don’t take). Our goal is to maximize the total value

∑n
i=1 vixi

in our knapsack subject to our weight constraint
∑n

i=1 wixi ≤W .

Note that our total value is the sum of the values of the items we take: think about why
∑
vixi is the total

value (remember that xi is either 0 or 1). This problem has 2n possible solutions (either take each item or

9.6 Probability & Statistics with Applications to Computing 9

don’t), and so is combinatorially hard (exponentially many solutions). If I asked you to write a program to
do this, would you even know where to begin, except by writing the brute-force solution?

MCMC to the rescue!

I. Define a Markov Chain with states being possible solutions, and (implicitly defined) tran-
sition probabilities that result in the stationary distribution π having higher probabilities
on “good” solutions to our problem.

We’ll define a Markov Chain with 2n states (that’s huge!). The states will be all possible solutions:
binary vectors x of length n (only having 0/1 entries). We’ll then define our transitions to go to “good”
states (ones that satisfy our weight constraint), while keeping track of the best solution so far. This
way, our stationary distribution has higher probabilities on good solutions than bad ones. Hence, when
we sample from the distribution (simulating the Markov chain), we are likely to get a good solution!

Algorithm 1 MCMC for 0-1 Knapsack Problem

1: x ← vector of n zeros, where xi is a binary vector in {0, 1}n which represents whether or not we have
item i. (Initially, start with an empty knapsack).

2: best x← x
3: for t = 1, . . . ,NUM ITER do
4: k ← a random integer in {1, 2, . . . , n}.
5: new x← x but with x[k] flipped (0→ 1 or 1→ 0).
6: if new x satisfies weight constraint then
7: x← new x
8: if value(x) > value(best x) then
9: best x← x

II. Run MCMC (simulate the Markov Chain for many iterations until we reach a “good”
state/solution). This means: start at some initial state, and transition according to the
transition probability matrix (TPM) for a long time. This will eventually take us to our
stationary distribution which has high probability on “good” solutions!

Basically, this algorithm starts with the guess of x being all zeros (no items). Then, for NUM ITER
steps, we simulate the Markov Chain. Again, what this does is give us a sample from our stationary
distribution. Inside the loop, we literally just choose a random object and flip whether or not we have
it. We maintain track of the best solution so far and return it.

That’s all there is to it! This is such a “dumb” solution right? We just start somewhere and randomly
transition for a long time and hope our answer is good. So MCMC definitely won’t guarantee us to get the
best solution, but it leads to “dumb” solutions that actually work quite well in practice. We are guaranteed
though (provided we take enough transitions), to sample from the stationary distribution which has higher
probabilities on good solutions. This is because we only transition to solutions that maintain feasibility.

Note: This is just one version of MCMC for the knapsack problem, there are definitely probably better
versions. It would be better to transition to solutions which have higher value, not just feasible solutions
like we did. The next example does a better job of this!

10 Probability & Statistics with Applications to Computing 9.6

9.6.3.2 Travelling Salesman Problem (TSP)

9.6.3.3 Travelling Salesman Problem

Definition 9.6.6: Travelling Salesman Problem

Given n locations and distances between each pair, we want to find an ordering of them that:

• Starts and ends in the same location.

• Visits each location exactly once (except the starting location twice).

• Minimizes the total distance travelled.

You can imagine an instantiation of this problem for the US Postal Service. A mail delivery person wants to
start and end at the post office, and find the most efficient route which delivers all the mail to the residents.

Again, where would you even begin on trying to solve this, other than brute-force? MCMC to the rescue
again! This time, our algorithm will be more clever than the previous.

I. Define a Markov Chain with states being possible solutions, and (implicitly defined) tran-
sition probabilities that result in the stationary distribution π having higher probabilities
on “good” solutions to our problem.

We’ll define a Markov Chain with n! states (that’s huge!). The states will be all possible solutions
(state=route): all orderings of the n locations. We’ll then define our transitions to go to “good” states
(ones that go to lower-distance routes), while keeping track of the best solution so far. This way,
our stationary distribution has higher probabilities on good solutions than bad ones. Hence, when we
sample from the distribution (simulating the Markov chain), we are likely to get a good solution!

Algorithm 2 MCMC for Travelling Salesman Problem (TSP)

1: route← random permutation of the n locations.
2: best route← route
3: for i = 1, . . . ,NUM ITER do
4: new route← route; but with two successive locations in route swapped.
5: ∆← dist(new route)− dist(route)
6: if ∆ < 0 OR (T > 0 AND Unif(0, 1) < e−∆/T) then
7: route← new route
8: if dist(route) < dist(best route) then
9: best route← route

II. Run MCMC (simulate the Markov Chain for many iterations until we reach a “good”
state/solution). This means: start at some initial state, and transition according to the
transition probability matrix (TPM) for a long time. This will eventually take us to our
stationary distribution which has high probability on “good” solutions!

We will start with a random state (route). At at each iteration, propose a new state (route) as follows:
choose a random index from {1, 2, . . . , n}, and swap that location with the successive (next) location
in the route, possibly with wraparound if index 50 is chosen. If the proposed route has lower total
distance (is better) than the current route, we will always transition to it (exploitation). Otherwise, if
T > 0, with probability e−∆/T , update the current route to the proposed route, where ∆ > 0 is the
increase in total distance. This allows us to transition to a “worse” route occasionally (exploration),

9.6 Probability & Statistics with Applications to Computing 11

and get out of local optima! Repeat this for NUM ITER transitions from the initial state (route), and
output the shortest route during the entire process (which may not be the last route).

Again, this is such a “dumb” solution right? But also very clever! We just start somewhere and randomly
transition for a long time and hope our answer is good. And it should be: after a long time, our route
distance increasingly gets better and better, so we should expect a rather good solution!

9.6.4 Summary

Once again, we’ve used probability to make our lives easier. There are definitely papers and research on
how to solve these problems deterministically, but this is one of the simplest algorithms you can get, and
it uses randomness! Again, the idea of MCMC for optimization is: define the state space to be all possible
solutions, define transitions to go to better states, and just run it and wait!

	Motivation
	Markov Chains
	The Transition Probability Matrix (TPM)
	Computing Probabilities
	The Stationary Distribution

	Markov Chain Monte Carlo (MCMC)
	Knapsack Problem
	Travelling Salesman Problem (TSP)
	Travelling Salesman Problem

	Summary

