
Chapter 3. Discrete Random Variables

3.5: Zoo of Discrete Random Variables Part II
Slides (Google Drive) Alex Tsun Video (YouTube)

3.5.1 The Uniform (Discrete) Random Variable

In the this lecture we will continue to expand our zoo of discrete random variables. The next one we will
discuss is the uniform random variable. This models situations where the probability of each value in the
range is equally likely, like the roll of a fair die.

Definition 3.5.1: Uniform Random Variable

X is a uniform random variable, denoted X ∼ Unif(a, b), where a < b are integers, if and only if X
has the following probability mass function

pX(k) =

{
1

b−a+1 , k ∈ {a, a + 1, ..., b}
0, otherwise

X is equally likely to take on any value in ΩX = {a, a+ 1, ..., b}. This set contains b− a+ 1 integers,
which is why P (X = k) is always 1

b−a+1 .

Additionally,

E [X] =
a + b

2
and Var (X) =

(b− a)(b− a + 2)

12

As you might expect, the expected value is just the average of the endpoints that the uniform random
variable is defined over.

Proof of Expectation and Variance of Uniform.

Suppose X ∼ Unif(a, b). We need to use the fact that
∑n

i=1 i = n(n+1)
2 and

∑n
i=1 i

2 = n(n+1)(2n+1)
6 to

compute some quantities. I will skip some steps as it is pretty tedious and just algebra, but just focus on
the setup.

E [X] =

b∑
k=a

k · pX(k) =

b∑
k=a

k · 1

b− a + 1
=

1

b− a + 1

b∑
k=a

k = · · · = a + b

2

E
[
X2
]

=

b∑
k=a

k2 · pX(k) =

b∑
k=a

k2 · 1

b− a + 1
=

1

b− a + 1

b∑
k=a

k2 = . . .

Var (X) = E
[
X2
]
− E [X]

2
=

(b− a)(b− a + 2)

12

This variable models situations like rolling a fair six sided die. Let X be the random variable whose value
is the number face up on a die roll. Since the die is fair each outcome is equally likely, which means that
X ∼ Unif(1, 6) so

pX(k) =

{
1
6 , k ∈ {1, 2, ..., 6}
0, otherwise

1

https://docs.google.com/presentation/d/1Cbn20jdH31DB6JtsSuqk4R5z5k23z3Iw_X4ln3cIC2Y/edit
https://www.youtube.com/watch?v=HYPt0oYH-0k&list=PLeB45KifGiuHesi4PALNZSYZFhViVGQJK&index=14&ab_channel=5MinuteAI
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This is fairly intuitive, but is nice to have these formulas in our zoo so we can make computations quickly,
and think about random processes in an organized fashion. Using the equations above we can find that

E [X] =
1 + 6

2
= 3.5 and Var (X) =

(6− 1)(6− 1 + 2)

12
=

35

12

3.5.2 The Geometric Random Variable

Another random variable that arises from the Bernoulli process is the Geometric random variable. It models
situations that can be thought of as the number of trials up to and including the first success.

For example, suppose we are betting on how many independent flips it will take for a coin to land heads
for the first time. The coin lands heads with a probability p, and you feel confident that it will take four
flips to get your first head. The only way that this can occur is with the following sequence of flips (since
our first head must have been on the fourth trial, we know everything before must be tails):

Let X be the random variable that represents the number of independent coin flips up to and including
your first head. Lets compute P (X = 4). X = 4 occurs exactly when there are 3 tails followed by a head.
So,

P (X = 4) = P (TTTH) = (1− p)(1− p)(1− p)p = (1− p)3p

In general,
pX(k) = (1− p)k−1 p

This is because there must be k − 1 tails in a row followed by a head occurring on the kth trial.

Let’s also verify that the probabilities sum to 1.

∞∑
k=1

pX(k) =
∞∑
k=1

(1− p)k−1p [Geometric PMF]

= p

∞∑
k=1

(1− p)k−1 [take out constant]

= p

∞∑
k=0

(1− p)k [reindex to 0]

= p

(
1

1− (1− p)

) [
geometric series formula:

∞∑
i=0

ri =
1

1− r

]

= p · 1

p
= 1

The second last step used the geometric series formula - this may be why this random variable is called
Geometric!
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Definition 3.5.2: Geometric Random Variable

X is a Geometric random variable, denoted X ∼ Geo(p), if and only if X has the following probability
mass function (and range ΩX = {1, 2, . . . }):

pX(k) = (1− p)k−1p, k = 1, 2, 3, ...

Additionally,

E [X] =
1

p
and Var (X) =

1− p

p2

Proof of Expectation and Variance of Geometric.
Suppose X ∼ Geo(p). The expectation is pretty complicated and uses a calculus trick, so don’t worry about
it too much. Just understand the first two lines, which are the setup! But before that, what do you think
it should be? For example, if p = 1/10, how many flips do you think it would take until our first head?
Possibly 10? And if p = 1/7, maybe 7? So seems like our guess will be E [X] = 1

p . It turns out this intuition
is actually correct!

E [X] =
∑

k∈ΩX

k · pX(k) [def of expectation]

=

∞∑
k=1

k(1− p)k−1p

= p

∞∑
k=1

k(1− p)k−1 [p is a constant with respect to k ]

= p

∞∑
k=1

d

dp
(−(1− p)k)

[
d

dy
yk = kyk−1, and chain rule of calculus

]

= −p

(
d

dp

∞∑
k=1

(1− p)k−1

)
[swap sum and integral]

= −p
(

d

dp

1

1− (1− p)

) [
geometric series formula:

∞∑
i=0

ri =
1

1− r

]

= −p
(

d

dp

1

p

)
= −p

(
− 1

p2

)
=

1

p

We’ll actually have a much nicer proof of this fact in 5.3 using the law of total expectation, so look forward
to that! I hope you’ll take my word that E

[
X2
]

is even worse, so I will not provide that proof. But the
expectation and variance are here for you to cite!

Example(s)

Let’s say you buy lottery tickets every day, and the probability you win on a given day is 0.01,
independently of other days. What is the probability that after a year (365 days), you still haven’t
won? What is the expected number of days until you win your first lottery?
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Solution If X is the number of days until the first win, then X ∼ Geo(p = 0.01). Hence, the probability we
don’t win after a year is (using the PMF)

P (X ≥ 365) = 1− P (X < 365) = 1−
364∑
k=1

P (X = k) = 1−
364∑
k=1

(1− 0.01)k−10.01

This is great, but for the geometric, we can actually get a closed-form formula by thinking of what it means
that X ≥ 365 in English. X ≥ 365 happens if and only if we lose for the first 365 days, which happens with
probability 0.99365. If you evaluated that nasty sum above and this quantity, you would find that they are
equal!
Finally, we can just cite the expectation of the Geometric RV:

E [X] =
1

p
=

1

0.01
= 100

This is the point of the zoo! We do all these generic calculations so we can use them later anytime.

Example(s)

You gamble by flipping a fair coin independently up to and including the first head. If it takes k tries,
you earn $2k (i.e., if your first head was the flip, you would earn $8). How much would you pay to
play this game?

Solution Let X be the number of flips to the first head. Then, X ∼ Geo( 1
2 ) because its a fair coin, and

pX(k) =
(

1− 1

2

)k−1 (1

2

)
=

1

2k
k = 1, 2, 3, ...

It is usually unwise to gamble, especially if your expected earnings are lower than the price to play. So, let
Y be your expected earnings. Note that Y = 2X because the amount you win depends the number of flips
it takes to get a heads. We will use LOTUS to compute E [Y ] = E

[
2X
]
. Recall E

[
2X
]
6= 2E[X] = 22 = 4 as

we’ve seen many times now.

E [Y ] = E
[
2X
]

=

∞∑
k=1

2k pX(k) =

∞∑
k=1

2k
1

2k
=

∞∑
k=1

1 =∞

So, you are expected to win an infinite amount of money!

Some might say they would be willing to pay any finite amount of money to play this game. Think about
why that would be unwise, and what this means regarding the modeling tools we have provided you so far.

3.5.3 The Negative Binomial Random Variable

Consider the situation where we are not just betting on the first head, but on the first r heads. How could
we use a random variables to model this scenario?

If you’ll recall from the last lecture, multiple Bernoulli random variables sum together to produce a more
complicated random variable, the binomial. We might try to do something similar with geometric random
variables.
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Let X be a random variable that represents the number of coin flips it takes to get our rth head.

X =

r∑
i=1

Xi

where Xi is a a geometric random variable that represents the number of flips it takes to get the ith head
after i − 1 heads have already occurred. Since all the flips are independent, so are the rvs X1, . . . , Xr. For
example, if r = 3 we might observe the following sequence of flips

In this case, X1 = 3 and represents the number of trials between the 0th to the 1st head; X2 = 1 and
represents the number of trials between the 1st to the 2nd head; X3 = 4 and represents the number of trials
between the 2nd and the 3rd head. Remember this fact for later!

How do we find P (X = 8)? There must be exactly 5 heads and 3 tails, so it is reasonable to expect (1−p)5 p3

to come up somewhere in our final formula, but how many ways can we get a valid sequence of flips? Note
that the last coin flip must be a heads, otherwise we would’ve gotten our r heads earlier than our 8th flip.
From here, any 2 of the first 7 flips can be heads, and 5 of must be tails. Thus, there are

(
7
2

)
valid sequences

of coin flips.

Each of these 7 flip sub-sequences (of the 8 total flips) occurs with probability (1 − p)5 p2 and there is no
overlap. However, we need to include the probability that the last coin flip is a heads. So,

pX(8) = P (X = 8) =

(
7

2

)
(1− p)5 p2 · p =

(
7

2

)
(1− p)5 p3

We can generalize as follows:

pX(k) =

(
k − 1

r − 1

)
(1− p)k−r pr

Again, the interpretation is that our rth head must come at the kth trial exactly; so in the first k− 1 we can
get r − 1 heads anywhere (hence the binomial coefficient), and overall we have r heads and k − r tails.

If we are interested in finding the expected value of X we might try the brute force approach directly from
the definition of expected value

E [X] =
∑

k∈ΩX

k pX(k) =
∑

k∈ΩX

k

(
k − 1

r − 1

)
(1− p)k−r pr
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but this approach is overly complicated, and there is a much simpler way using linearity of expectation!
Suppose X1, ..., Xr ∼ Geo(p) are independent. As we showed earlier, X =

∑r
i=1 Xi, and we showed that

each E [Xi] = 1/p. Using linearity of expectation, we can derive the following:

E [X] = E

[
r∑

i=1

Xi

]
=

r∑
i=1

E [Xi] =

r∑
i=1

1

p
=

r

p

Using a similar technique and the (yet unproven) fact that Var (X + Y ) = Var (X) +Var (Y ), we can find the
variance of X from the sum of the variances of multiple geometric random variables

Var (X) = Var

(
r∑

i=1

Xi

)
=

r∑
i=1

Var (Xi) =

r∑
i=1

1− p

p2
=

r(1− p)

p2

This random variable is called the negative binomial random variable. It is quite common so it too deserves
a special place in our zoo.

Definition 3.5.3: Negative Binomial Random Variable

X is a negative binomial random variable, denoted X ∼ NegBin(r, p), if and only if X has the
following probability mass function (and range ΩX = {r, r + 1, . . . , }):

pX(k) =

(
k − 1

r − 1

)
pr (1− p)k−r, k = r, r + 1, ...

X is the sum of r independent Geo(p) random variables.

Additionally,

E [X] =
r

p
and Var (X) =

r(1− p)

p2)

Also, note that Geo(p) ≡ NegBin(1, p), and that if X,Y are independent such that X ∼ NegBin(r, p)
and Y ∼ NegBin(s, p), then X + Y ∼ NegBin(r + s, p) (waiting for r + s heads).

3.5.4 Exercises

1. You are a hardworking boxer. Your coach tells you that the probability of your winning a boxing
match is 0.25, independently of every other match.

(a) How many matches do you expect to fight until you win once?

(b) How many matches do you expect to fight until you win ten times?

(c) You only get to play 12 matches every year. To win a spot in the Annual Boxing Championship,
a boxer needs to win at least 10 matches in a year. What is the probability that you will go to
the Championship this year?

(d) Let q be your answer from the previous part. How many times can you expect to go to the
Championship in your 20 year career?

Solution:
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(a) Let X be the matches you have to fight until you win once. Then, X ∼ Geo(p = 0.25), so
E [X] = 1

p = 1
0.25 = 4.

(b) Let Y be the matches you have to fight until you win ten times. Then, Y ∼ NegBin(r = 10, p =
0.25), so E [Y ] = r

p = 10
0.25 = 40.

(c) Let Z be the number of matches you win out of 12. Then, Z ∼ Bin(n = 12, p = 0.25), and we
want

P (Z ≥ 10) =

12∑
k=10

(
12

k

)
0.2k(1− 0.2)12−k

(d) Let W be the number of times we make it to the Championship in 20 years. Then, W ∼ Bin(n =
20, p = q), and

E [W ] = np = 20q

2. You are in music class, and your cruel teacher says you cannot leave until you play the 1000-note
song Fur Elise correctly 5 times. You start playing the song, and if you play an incorrect note,
you immediately start the song over from scratch. You play each note correctly independently with
probability 0.999.

(a) What is the probability you play the 1000-note song Fur Elise correctly immediately? (i.e., the
first 1000 notes are all correct).

(b) What is the probability you take exactly 20 attempts to correctly play the song 5 times?

(c) What is the probability you take at least 20 attempts to correctly play the song 5 times?

(d) (Challenge) What is the expected number of notes you play until you finish playing Fur Elise
correctly 5 times?

Solution:

(a) Let X be the number of correct notes we play in Fur Elise in one attempt, so X ∼ Bin(1000, 0.999).
We need P (X = 1000) = 0.9991000 ≈ 0.3677.

(b) If Y is the number of attempts until we play the song correctly 5 times, then Y ∼ NegBin(5, 0.3677),
and so

P (Y = 20) =

(
20− 1

5− 1

)
0.36775(1− 0.3677)15 ≈ 0.0269

(c) We can actually take two approaches to this. We can either take our Y from earlier, and compute

P (Y ≥ 20) = 1− P (Y < 20) = 1−
19∑
k=5

(
k − 1

4

)
0.36775(1− 0.3677)k−5 ≈ 0.1161

Notice the sum starts at 5 since that’s the lowest possible value of Y . This would be exactly the
probability of the statement asked. We could alternatively rephrase the question as: what is the
probability we play the song correctly at most 4 times correctly in the first 19 times? Check that
these questions are equivalent! Then, we can let Z ∼ Bin(19, 0.3677) and instead compute

P (Z ≤ 4) =

4∑
k=0

(
19

k

)
0.3677k(1− 0.3677)19−k ≈ 0.1161

(d) We will have to revisit this question later in the course! Note that we could have computed
the expected number of attempts to finish playing Fur Elise though, as it would follow a
NegBin(5, 0.3677) distribution with expectation 5

0.3677 ≈ 13.598.


	The Uniform (Discrete) Random Variable
	The Geometric Random Variable
	The Negative Binomial Random Variable
	Exercises

