0.3.1 Summation Notation

Suppose that we want to write the sum: 1 + 2 + 3 + 5 + 6 + 7 + 8 + 9 + 10. We can write out each element, but it becomes tedious. We could use dots, to signify this as: 1 + 2 + ··· + 9 + 10, but this can become vague. Instead, we can use summation notation as shorthand for summations of values. Here we are referring to the sum of each element \(i \), where \(i \) will take on every value in the range starting with 1 and ending with 10.

\[
1 + 2 + 3 + \cdots + 10 = \sum_{i=1}^{10} i
\]

Further, we can use equations in these definitions. In the below, in the first equation (0.3.1) \(j \) takes on the values 4 to 9 and the square of each of these values will be summed together. Note that this is equivalent to \(k \) taking on the values of 1 to 6, and adding 3 to each of the values before squaring and summing them up (0.3.2).

\[
16 + 25 + 36 + \cdots + 81 = \sum_{j=4}^{9} j^2 \tag{0.3.1}
\]
\[
= \sum_{k=1}^{6} (k + 3)^2 \tag{0.3.2}
\]

This brings us to the following definition of summation notation:

Definition 0.3.1.1: Summation Notation

Let \(x_1, x_2, x_3, \ldots \) be a sequence of numbers. Then, the following notation represents the sum \(x_a + x_{a+1} + \cdots + x_{b-1} + x_b \):

\[
\sum_{i=a}^{b} x_i
\]
Further, if \(S \) is a set, and \(f : S \rightarrow \mathbb{R} \) is a function defined on \(S \), then the following notation sums over all elements \(x \in S \) of \(f(x) \):

\[
\sum_{x \in S} f(x)
\]

Note that the sum over no terms is defined as 0.

Further, the associative and distributive properties hold for sums.

Fact 0.3.1.1: The Associative and Distributive Properties of Sums

We have the associative property (0.3.3) and distributive property (0.3.4, 0.3.5) for sums.

\[
\sum_{x \in A} f(x) + \sum_{x \in A} g(x) = \sum_{x \in A} (f(x) + g(x)) \quad (0.3.3)
\]

\[
\sum_{x \in A} \alpha \cdot f(x) = \alpha \sum_{x \in A} (f(x)) \quad (0.3.4)
\]

\[
(\sum_{x \in A} f(x))(\sum_{y \in B} g(x)) = \sum_{x \in A} \sum_{y \in B} f(x)g(x) \quad (0.3.5)
\]

The proof of this is left to the reader, but see the examples below for some intuition!

Examples

For, \(\sum_{k=3}^{7} k^{10} \), we raise each value from 3 to 7 to the power of 10 and sum them together. That is:

\[
\sum_{k=3}^{7} k^{10} = 3^{10} + 4^{10} + 5^{10} + 6^{10} + 7^{10}
\]

Then if, we let \(S = \{3, 6, 8, 11\} \), for \(\sum_{y \in S} (2^{y} + 5) \), raise 2 to the power of each value in \(S \) and sum the results together. That is

\[
\sum_{y \in S} (2^{y} + 5) = (2^{3} + 5) + (2^{6} + 5) + (2^{8} + 5) + (2^{11} + 5)
\]

For the sum of a constant, \(\sum_{t=6}^{8} 4 \), we add the constant, 4 for each of the value in the range.

\[
\sum_{t=6}^{8} 4 = 4 + 4 + 4 + 4
\]

Finally, for a range with no values, the sum is defined as 0, for \(\sum_{z=2}^{1} \sin(z) \), where there are no values from 2 to 1, we have:

\[
\sum_{z=2}^{1} \sin(z) = 0
\]
Looking at the associative property, consider the following:

\[
\sum_{i=5}^{6} i + \sum_{i=5}^{6} i^2 = (5 + 6 + 7) + (5^2 + 6^2 + 7^2) = (5 + 5^2) + (6 + 6^2) + (7 + 7^2) = \sum_{i=5}^{6} i + i^2
\]

Also, for the distributive property consider:

\[
\sum_{i=3}^{5} 2i = 2 \cdot 3 + 2 \cdot 4 + 2 \cdot 5 = 2(3 + 4 + 5) = 2 \sum_{i=3}^{5} i
\]

and:

\[
\prod_{i=1}^{2} f(a_i) \prod_{j=1}^{3} g(b_j) = (f(a_1) + f(a_2))(g(b_1) + g(b_2) + g(b_3)) = (f(a_1)g(b_1) + f(a_1)g(b_2) + f(a_1)g(b_3) + f(a_2)g(b_1) + f(a_2)g(b_2) + f(a_2)g(b_3)) = \sum_{i=1}^{2} \sum_{j=1}^{3} f(a_i)g(b_j)
\]

0.3.2 Product Notation

Similarly, we can define product notation to handle multiplications.

Definition 0.3.2.1: Product Notation

Let \(x_1, x_2, x_3, \ldots\) be a sequence of numbers. Then, the following notation represents the sum \(x_a \cdot x_{a+1} \cdot \cdots \cdot x_{b-1} \cdot x_b:\)

\[
\prod_{i=a}^{b} x_i
\]

Further, if \(S\) is a set, and \(f : S \rightarrow \mathbb{R}\) is a function defined on \(S\), then the following notation multiplies over all elements \(x \in S\) of \(f(x)\):

\[
\prod_{x \in S} f(x)
\]

Note that the product over no terms is defined as 1.

Examples

For \(\prod_{a=4}^{7}\), we multiply each value in the range 4 to 7 and have:

\[
\prod_{a=4}^{7} = 4 \cdot 5 \cdot 6 \cdot 7
\]
Then if, we let $S = \{3, 6, 8, 11\}$, for $\prod_{x \in S} 8$, we multiply 8 for each value in the set, S and have:

$$\prod_{x \in S} 8 = 8 \cdot 8 \cdot 8 \cdot 8$$

Then for $\prod_{z=2}^{1} \sin(z)$, we have the empty product, because there are no values in the range 2 to 1, so we have:

$$\prod_{z=2}^{1} \sin(z) = 1$$