MARKOV CHAINS TWO APPLICATIONS

ANNA KARLIN
SOME SLIDES BY ALEX TSUN

AGENDA

- DISCRETE-TIME STOCHASTIC PROCESSES
- REVIEW MARKOV CHAINS
- PAGERANK
- THE METROPOLIS ALGURITHIN

DISCRETE-TIME STOCHASTIC PROCESSES

<u>Discrete-Time Stochastic Process (DTSP)</u>: A discrete-time stochastic process is a sequence of random variables $X_0, X_1, X_2, ...$ where X_t is the value at time t.

Examples:

- The temperature in Seattle each day.
- The stock price of TESLA each day.
- Your position on a one-dimensional number line during a "random walk".
- The Bernoulli process (at each time step, flip a coin independently).

DISCRETE-TIME STOCHASTIC PROCESSES

RANDOM WALK ON A GRAPH EXAMPLE

Suppose we start at node 1, and at each time step, independently step to a neighboring node with equal probability.

RANDOM WALK ON A GRAPH EXAMPLE

Suppose we start at node 1, and at each time step, independently step to a neighboring node with equal probability.

For example, $X_0 = 1$ since at time t = 0 we are at node 1. Then, X_1 is either 2 or 3 (but cannot be 4 or 5 since not neighbors of node 1). And so on.

This DTSP is actually a special type of DTSP called a Markov Chain.

RANDOM WALK ON A GRAPH EXAMPLE

Three Key Properties:

- 1. We only have finitely many states (we have 5 in this example: {1,2,3,4,5}).
- 2. We don't care about the past, given the present. That is, the distribution of where we go next <u>ONLY</u> depends on where we are *currently*, and not any past history.
- 3. The transition probabilities are the <u>same</u> at each time step (e.g., if we are at node 1 at time t = 0 or t = 152, we always are equally likely to go to node 2 or 3).

MARKOV CHAINS

Discrete time stochastic process $X_1, X_2, ..., X_t, ...$ Such that

- There is a state space S, such that each X_t is in S.
- Pr $(X_{t+1} = j \mid X_t = i, \text{ history}) = \text{Pr } (X_{t+1} = j \mid X_t = i)$
- p_{ij} = Pr $(X_{t+1}$ = j | X_t = i) for all i and j specified by transition probability matrix (TPM) P

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

5

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P(X_{2} = 3|X_{0} = 2)$$

$$= \sum_{i=1}^{5} P(X_{2} = 3|X_{0}) (2, X_{1} = i)P(X_{1} = i|X_{0} = 2) \text{ [LTP]}$$

$$= \sum_{i=1}^{5} P(X_{2} = 3|X_{1} = i)P(X_{1} = i|X_{0} = 2) \text{ [Markov property]}$$

$$= \sum_{i=1}^{5} P(X_2 = 3 | X_0) (2, X_1 = i) P(X_1 = i | X_0 = 2) \text{ [LTP]}$$

$$= \sum_{i=1}^{5} P(X_2 = 3 | X_1 = i) P(X_1 = i | X_0 = 2) \text{ [Markov property]}$$

$$= P(X_2 = 3 | X_1 = 1) P(X_1 = 1 | X_0 = 2) + P(X_2 = 3 | X_1 = 4) P(X_1 = 4 | X_0 = 2)$$

 $P(X_2 = 3 | X_0 = 2)$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= P_{13}P_{21} + P_{43}P_{24} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} = \frac{5}{12}$$

RANDOM PICTURE

Suppose we start at a random state with these probabilities (sum to 1).
$$v = [0.25, 0.45, 0.15, 0.05, 0.10]$$

$$P(X_0 = 1)$$
 $P(X_0 = 2)$ $P(X_0 = 3)$ $P(X_0 = 4)$ $P(X_0 = 5)$

What is my belief distribution for where I am next?

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 1/3 & 0 & 1/3 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Suppose we start at a random state with these probabilities (sum to 1).

$$v = [0.25, 0.45, 0.15, 0.05, 0.10]$$

 $P(X_0 = 1) P(X_0 = 2) P(X_0 = 3) P(X_0 = 4) P(X_0 = 5)$

What is my belief distribution for where I am next?

Let's compute the matrix product vP (we'll see why soon!).

$$P(X_0=1)$$
 $P(X_0=2)$ $P(X_0=3)$ $P(X_0=4)$ $P(X_0=5)$

$$p = [0.25, 0.45, 0.15, 0.05, 0.10]$$

Let's compute the matrix product vP (we'll see why soon!).

$$P(X_0=1)$$
 $P(X_0=2)$ $P(X_0=3)$ $P(X_0=4)$ $P(X_0=5)$

$$v = [0.25, 0.45, 0.15, 0.05, 0.10]$$

$$\sum_{i=1}^{5} P_{i1}v_{i},$$

$$P(X_1 = 1)$$

$$\sum_{i=1}^{3} P_{i1} v_i = \sum_{i=1}^{3} P(X_1 = 1 | X_0 = i) P(X_0 = i) = P(X_1 = 1)$$

Def of TPM (works for any time)

Def of v

LTP

Let's compute the matrix product vP (we'll see why soon!).

$$= \begin{bmatrix} 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$P(X_0=1)$$
 $P(X_0=2)$ $P(X_0=3)$ $P(X_0=4)$ $P(X_0=5)$

$$v = [0.25, 0.45, 0.15, 0.05, 0.10]$$

$$\sum_{i=1}^{n} P_{i1}v_{i}, \qquad \sum_{i=1}^{n} P_{i2}v_{i},$$

$$P(X_{1}=1) \qquad P(X_{1}=1)$$

APPLYING A TRANSITION MATRIX

Let's compute the matrix product
$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Let's compute the matrix product $P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$v = \begin{bmatrix} 0.25, & 0.45, & 0.15, & 0.05, & 0.10 \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{5} P_{i1} v_i, & \sum_{i=1}^{5} P_{i2} v_i, & P(X_1 = 1) & P(X_2 = 2) \end{bmatrix}$$

$$\sum_{i=1}^{5} P_{i2}v_i = \sum_{i=1}^{5} P(X_1 = 2|X_0 = i)P(X_0 = i) = P(X_1 = 2)$$

Def of TPM (works for any time)

Def of v

LTP

 $P(X_0 = 1)$ $P(X_0 = 2)$ $P(X_0 = 3)$ $P(X_0 =$

APPLYING A TRANSITION MATRIX

Let's compute the matrix product
$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Let's compute the matrix product $P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

$$\sum_{i=1}^{5} P_{i2}v_i = \sum_{i=1}^{5} P(X_1 = 2 | X_0 = i)P(X_0 = i) = P(X_1 = 2)$$

Def of v

 $P_{i2}v_i$,

= 2)

LTP

APPLYING A TRANSITION MATRIX

Let's compute the matrix product of (we'll see why soon!).

$$P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
0 & 1/3 & 1/3 & 0 & 1/3 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

 $P(X_1 = 1)$ $P(X_1 = 2)$ $P(X_1 = 3)$ $P(X_1 = 4)$ $P(X_1 = 5)$

$$P(X_0=1) \quad P(X_0=2) \quad P(X_0=3) \quad P(X_0=4) \quad P(X_0=5)$$

$$v = \begin{bmatrix} 0.25, & 0.45, & 0.15, & 0.05, & 0.10 \end{bmatrix} \quad \begin{bmatrix} \sum_{i=1}^{5} P_{i1}v_i, & \sum_{i=1}^{5} P_{i2}v_i, & \sum_{i=1}^{5} P_{i3}v_i, & \sum_{i=1}^{5} P_{i4}v_i, & \sum_{i=1}^{5} P_{i5}v_i \end{bmatrix}$$

Right-multiplying by P gives the belief distribution at the next time step!

Right-multiplying by P gives the belief distributed by P gives the belief distributed by P gives the belief distributed by P =
$$(P(X_i=1), P(X_i=2), P(X_i=$$

APPLYING A TRANSITION MATRIX

Let's compute the matrix product of (we'll see why soon!).

$$P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
0 & 1/3 & 1/3 & 0 & 1/3 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

$$P(X_0 = 1) \quad P(X_0 = 2) \quad P(X_0 = 3) \quad P(X_0 = 4) \quad P(X_0 = 5)$$

$$v = \begin{bmatrix} 0.25, & 0.45, & 0.15, & 0.05, & 0.10 \end{bmatrix} \quad \begin{bmatrix} \sum_{i=1}^{5} P_{i1}v_i, & \sum_{i=1}^{5} P_{i2}v_i, & \sum_{i=1}^{5} P_{i3}v_i, & \sum_{i=1}^{5} P_{i4}v_i, & \sum_{i=1}^{5} P_{i5}v_i \end{bmatrix}$$

$$P(X_1 = 1) \quad P(X_1 = 2) \quad P(X_1 = 3) \quad P(X_1 = 4) \quad P(X_1 = 5)$$

By induction (repeatedly applying this matrix P), vPt is the distribution after t time steps. $V P_{\epsilon} = (\Re(X^{\epsilon_1})) - \cdots$

$$P(X_0=1)$$
 $P(X_0=2)$ $P(X_0=3)$ $P(X_0=4)$ $P(X_0=5)$

$$v = [0.25, 0.45, 0.15, 0.05, 0.10]$$

$$P_{i1}v_i$$
 ,

0.2

0.2

0.2

0.2

$$\sum_{i=1}^{P_{i2}}$$

0.2

0.2

0.2

0.2

0.2

0.2

0.2

$$P(X_1 = 3)$$

$$\sum_{i=1}^{5} P_{i2} v_i, \qquad \sum_{i=1}^{5} P_{i3} v_i, \qquad \sum_{i=1}^{5} P_{i4} v_i, \qquad \sum_{i=1}^{5} P_i$$

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

$$i=1$$
 $i=1$ $i=1$ $i=1$ $P(X_1 = 2)$ $P(X_1 = 3)$ $P(X_1 = 4)$ $P(X_1 = 5)$

Let's compute the matrix product vP (we'll see why soon!).

$$P(X_t=1)$$
 $P(X_t=2)$ $P(X_t=3)$ $P(X_t=4)$ $P(X_t=5)$

0.1.) 0.2 0.3

STATIONARY DISTRIBUTION OF A MARKOV CHAIN

<u>Stationary Distribution</u>: The stationary distribution of a Markov Chain with n states (which doesn't always exist), is the n-dimensional row vector π (which must be a probability distribution – nonnegative and sums to 1), such that

$$\pi P = \pi$$

Intuitively, it means that the distribution at the next time step is the same as the distribution at the current time step. This typically happens after a "long time" (called the mixing time) in the process (meaning after lots of transitions are taken).

STATIONARY DISTRIBUTION OF A MARKOV CHAIN

Fundamental Theorem of Markov Chains

Let P be the TPM for a Markov chain. Under minor technical conditions, including "connectivity"

$$\lim_{t \to \infty} P_{ij}^t = \pi_j \qquad \forall i, j$$

where

$$\pi_j = \sum_{i=1}^n \pi_i p_{ij}$$
 $j = 1, ..., n$
 $\pi_1 + \pi_2 + ... + \pi_n = 1$

TI = TIP

No more (Cs.

APPLICATION 1: PAGERANK

1997

- Bill Clinton in White House
- Deep Blue beat world chess champion (Kasparov)

And the Internet kind of sucked

Nov '97: only one of the top 4 commercial search engines actually *found itself* when you search

THE PROBLEM

Search engines worked by matching words

Top search for Bill Clinton

o `Bill Clinton Joke of the Day' Website

Deeply susceptible to spammers and advertisers

HOW TO FIX?

Collect pages with decent textual match

Then rank them by some measure of 'quality' or 'authority'.

Enter two groups:

Jon Kleinberg (prof at Cornell)
Larry Page and Sergey Brin (Ph.D. students at Stanford)

BOTH GROUPS HAD THE SAME BRILLIANT IDEA

Larry Page and Sergey Brin (Ph.D. students at Stanford)

• Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)

 MacArthur Genius Prize, Nevanlina Prize and many other academic honors.

PAGERANK

 Key idea is hyperlink analysis: take into account the directed graph structure of the web

PAGERANK

Idea 1: "Citations"

As with academic publishing, it's a good idea to think of each link to a page as a "citation" or "vote of quality".

Rank pages by in-degree?

PROBLEMS WITH RANKING PAGES BY INDEGREE

- Spamming
- Some linkers not discriminating
- Not all links created equal.

Perhaps we should weight the links somehow and then use the weights of the in-links to rank pages.

INCHING TOWARDS PAGERANK

- Web page has high quality if it's linked to by lots of high quality pages.
- A page is high quality if it links to lots of high quality pages.
- So kind of a recursive definition

INCHING TOWARDS PAGERANK

• If web page x has d outgoing links, one of which goes to y, then this contributes 1/d to the importance of y.

 But, we want to take importance/quality of x into account.

Recursive definition.

$$P_{ij} = \begin{cases} \frac{d_i}{d_i} & \text{if (i bounder)} \end{cases}$$

