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DISCRETE-TIME STOCHASTIC PROCESSES

Discrete-Time Stochastic Process (DTSP): A discrete-time stochastic process is a
sequence of random variables X,, X;, X,, ... where X, is the value at time t.

Examples:
e The temperature in Seattle each day.
e The stock price of TESLA each day.
e Your position on a one-dimensional number line during a "random walk".
e The Bernoulli process (at each time step, flip a coin independently).



DISCRETE-TIME STOCHASTIC PROCESSES

Tue28  83°/60° sunny «— Xq
Wed29 81°/59° Sunny «— X 1
Thu 30 78°/58° Mostly Sunny P E— X2
Fri 31 78°/59° Partly Cloudy «— X3
Sat 01 79°/59° Partly Cloudy 4+ X4
sun02 78°/s8° Mostly Sunny «— X5




RANDOM WALK ON A GRAPH £ XAMPL[

Suppose we start at node 1, and at each time step, independently step to a neighboring
node with equal probability.



RANDOM WALK ON A GRAPH EXAMPLE

Suppose we start at node 1, and at each time step, independently step to a neighboring
node with equal probability.

For example, X, = 1 since at time t = 0 we are at node 1. Then, X; is either 2 or 3 (but
cannot be 4 or 5 since not neighbors of node 1). And so on.

This DTSP is actually a special type of DTSP called a Markov Chain.



RANDOM WALK ON A GRAPH EXAMPLE

Three Key Properties:
1. We only have finitely many states (we have 5 in this example: {1,2,3,4,5}).
2. We don't care about the past, given the present. That is, the distribution of where
we go next ONLY depends on where we are currently, and not any past history.
3. The transition probabilities are the same at each time step (e.g., if we are at node 1
at time t = 0 or t = 152, we always are equally likely to go to node 2 or 3).




MARKOV CHAINS

Discrete time stochastic process X, X5, ..., X, ..
Such that -
S‘—‘i‘ﬁn--."s

® There is a state space S, such that each X; is 1in S.

.Pr(Xt+1:j|Xt:-i)h%)zpr(xt+1:j|Xt:-i)

0|pU = Pr (Xegy1 = ] | X = i)'for all i and j specified by
transition probability matrix (TPM) P




TRANSITION PROBABILITY MATRIX EXAMPLE




TRANSITION PROBABILITY MATRIX EXAMPLE
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TRANSITION PROBABILITY MATRIX EXAMPLE
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TRANSITION PROBABILITY MATRIX EXAMPLE
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TRANSITION PROBABILITY MATRIX EXAMPLE
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TRANSITION PROBABILITY MATRIX EXAMPLE
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TRANSITION PROBABILITY MATRIX EXAMPLE
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P=l1/2 0 0 1/2 0

COMPUTING PROBABILITY EXAMPLE

P(X; =3|Xo, = 2)
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COMPUTING PROBABILITY EXAMPLE  wvas-
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COMPUTING PROBABILITY EAMPLE
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COMPUTING PROBABILITY EXAMPLE
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RANDOM PICTURE



APPLYING A TRANSITION MATRIX
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Suppose we start at a random state with
=\ these probabilities (sum to 1).

=1[0.25, 0.45, 0.15, 0.05, 0.10]

—

P(Xo= 1) P(Xe=

2) P(Xe= 3) P(Xe= 4) P(Xe= 5)

What is my belief distribution for where I

am next?
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APPLYING A TRANSITION MATRIX
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Suppose we start at a random state with
these probabilities (sum to 1).

v=[025 ~ 045 015 005  0.10]
P(Xe= 1) P(Xe= 2) P(Xe= 3) P(Xe= 4) P(Xe= 5)

What is my belief distribution for where I
am next?
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APPLYING A TRANSITION MATRIX

Let’s compute the matrix product P _
vP (we’ll see why soon!). -

P(Xe= 1) P(Xe= 2) P(Xg= 3) P(Xe= 4) P(Xe= 5)

v +[0.25 045 015 005  0.10]
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APPLYING A TRANSITION MaTRIX .S,
Let’s compute the matrix product P —-— 1/2
vP (we’ll see why soon!). ()
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ZPuvl ZP(Xl = 11Xy = DP(Xo = i) = P(X, = 1)

Def of TPM (works
for any time)

Def of v
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APPLYING A TRANSITION MATRIX

P =

Let’s compute the matrix product
vP (we’ll see why soon!).
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APPLYING A TRANSITION MATRIX

Let’s compute the matrix product i) —-—
vP (we’ll see why soon!).

P(Xo= 1) P(Xg= 2) P(Xe= 3) P(Xo= 4) P(Xe= 5)

v +[0.25, 045 015 005  0.10]
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ZPlzvl ZP(Xl = 21Xy = DP(Xo = i) = P(X; = 2)

Def of TPM (works
for any time)

Def of v
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APPLYING A TRANSITION MATRIX

Let’s compute the matrix product 1) —-—
vP (we’ll see why soon!).

P(Xe= 1) P(Xe= 2) P(Xg= 3) P(Xp=
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Def of TPM (works
for any time)

Def of v
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APPLYING A TRANSITION MATRIX | O 1/2 /2 0 0

/2 0 0 1/2 0
Let’s compute the matrix product P — 1/2 O 0 1/2 0
vP (we’ll see why soon!). 0 1/3 ]/3 O 1/3
0 0 0 1 0

P(Xe= 1) P(Xe= 2) P(Xg= 3) P(Xe= 4) P(Xe= 5)

»=[025 045 015, 005, 010] |[nfw 2w Y. YRen R

P(X;= 1) P(X;= 2) P(X;= 3) P(X=4) P(X;=5)

Right-multiplying by P gives the belief distribution at the next time step!
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APPLYING A TRANSITION MATRIY [ © /2 1/2 0 0

/2 0 0 1/2 0
Let’s compute the matrix product P = 1/2 0 O 1/2 0
vP (we’ll see why soon!). O 1/3 ]/3 0 1/3
0 0 0 1 0

P(Xe= 1) P(Xe= 2) P(Xg= 3) P(Xe= 4) P(Xe= 5)

(= I—‘_———_SP(XF 1) P(X;= 2) P(X= 3) P(X=4) P(X= 5)

Right-multiplying by P gives the belief distribution at the next time step!

p=[025, 045 015 005  010] |[Lre Drew Yrw S vl

By induction (repeatedly applying this matrix P), vPt is the distribution after t

time steps. e
v PG, - )



w S E

W (22 6 .18
R = s |25 42 33
E\4a 3 25
W S E
W [.238 .492 .270
R = S |.307 .402 .291
E \.335 450 .215
WS E 60 6O 60
W [.2940 4413 .2648 ? ro . Q
ROV~ 5 |.2042 4411 .2648 " [V & \}-)
E \.2942 4413 2648
D
L 4
S E
W [.294117647057 .44117647059 .26470588235
Fw x~ S 294117647061 .44117647058 .26470588235
E \.29411764706., .44117647059 .26470588235
W S E
W [.294117647058823 .441176470588235' .264705882352941\
~ S .204117647068823 .441176470588235 .264705882352941
E \.294117647068823a .441176470588235 .264705882352941
- ([o5\ 6.3% 0.\?) v P
! 0.5\ o +03 el £0. 3
O.‘)\«-O\%&ko*\?:—‘ ‘i“‘ —d‘ -




Tg - =05,
v P :((0(\)«. d‘%) s

APPLYING A TRANSITION MMKIX Zz
et ““b‘ o

P(Xe= 1) P(Xe= 2) P(Xg= 3) P(Xe= 4) P(Xe= 5)
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APPLYING A TRANSITION MATRIX f ° @‘/2 0 0

Let’s compute the matrix product P = 1/2 0 1/2 0
vP (we’ll see why soon!). O ]/3 0 1/3
0 0 | 0

P(X¢= 1) P(X¢= 2) P(X¢= 3) P(X¢= 4) P(X¢= 5)
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STATIONARY DISTRIBUTION OF A MARKOV CHAIN

Stationary Distribution: The stationary distribution of a Markov Chain with n states
(which doesn't always exist), is the n-dimensional row vector = (which must be a probability
distribution - nonnegative and sums to 1), such that

nmP=m

-
Intuitively, it means that the distribution at the next time step is the same as the
distribution at the current time step. This typically happens after a “long time" (called the
mixing time) in the process (meaning after lots of transitions are taken).

(@"\KQ‘- —"/"))



STATIONARY DISTRIBUTION OF A MARKOV CHAIN

Fundamental Theorem of Markov Chains

Let P be the TPM for a Markov chain. Under minor technical
conditions, including ”connectivity”

lim P, =m Vi, j
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APPLICATION 1: PAGERANK

1997
e Bill Clinton in White House

e Deep Blue beat world chess champion (Kasparov)

And the Internet kind of sucked

Nov ¢97: only one of the top 4 commercial search
engines actually found itself when you search



THE PROBLEM

Search engines worked by matching words

Top search for Bill Clinton

o "Bill Clinton Joke of the Day’ Website

Deeply susceptible to spammers and advertisers



HOW T0 FIX]

Collect pages with decent textual match

Then rank them by some measure of ‘quality’ or ‘authority’.

Enter two groups:

e Jon Kleinberg (prof at Cornell)
® |larry Page and Sergey Brin (Ph.D. students at Stanford)



BOTH GROUPS HAD THE SAME BRILLIANT IDEA

Larry Page and Sergey Brin (Ph.D. students at Stanford)

® Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)

® MacArthur Genius Prize, Nevanlina Prize and many other
academic honors.



DAGERANK o

® Key idea is hyperlink analysis: take into account the
directed graph structure of the web




DAGERANK o

Idea 1: “Citations”

As with academic publishing, it’s a good idea to think of each link to a
page as a “citation” or “vote of quality”.

k’_\<)
©

Rank pages by 1in-degree?



PROBLEMS WITH RANKING PAGES BY INDEGREE

® Spamming
e Some linkers not discriminating
e Not all links created equal.

Perhaps we should weight the links somehow and then use the
weights of the in-links to rank pages.



INCHING TOWARDS PAGERANK Google

PageRank

e Web page has high quality 1if it’s linked to by lots of
high quality pages.

® A page is high quality if it links to lots of high
quality pages.

® So kind of a recursive definition



INCHING TOWARDS PAGERANK

e If web page x has d outgoing links, one of which goes to
y, then this contributes 1/d to the importance of y.

e But, we want to take importance/quality of x into
account.

® Recursive definition.
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