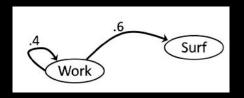
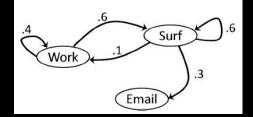
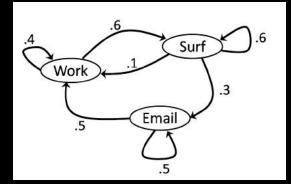
Markov Chains and PageRank

Anna Karlin

A first Markov chain

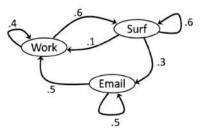






My daily life in a nutshell!

 $\begin{array}{cccc} W & S & E \\ W & (.4 & .6 & 0 \\ S & (.1 & .6 & .3 \\ E & .5 & 0 & .5 \end{array} \right)$



$$\left(\begin{array}{rrrr}.4 & .6 & 0\\.1 & .6 & .3\\.5 & 0 & .5\end{array}\right)$$

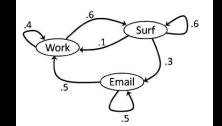
R	2 :	$= \begin{array}{c} W\\ S\\ E\end{array}$	$W = \begin{pmatrix} .22 \\ .25 \\ .45 \end{pmatrix}$	$S \\ .6 \\ .42 \\ .3$	
R -3	=	$W \\ S \\ E$	W (.238 (.307 (.335)	S .492 .402 .450	E .270 .291 .215
R ¹⁰			W	S	

				W	S	E	
			W	(.2941176470	5 .44117647059	.26470588235	
\mathbf{p}^3	0	* S	.2941176470	6 .44117647058	.26470588235		
	•		E	.2941176470	6 .44117647059	.26470588235 /	
				W	S	E	
		W	(.2941	17647058823	.44117647058823	5 .26470588235294	1
60	8	S	.2941	17647068823	.44117647058823	5 .26470588235294	1
		E	.2941	17647068823	.44117647058823	5 .26470588235294	1

$$\pi[S] = \frac{15}{34}, \pi[W] = \frac{10}{34}, \pi[E] = \frac{9}{34}.$$

$$\begin{cases} \pi[W] &= .4\pi[W] + .1\pi[S] + .5\pi[E] \\ \pi[S] &= .6\pi[W] + .6\pi[S] + .0\pi[E] \\ \pi[E] &= .0\pi[W] + .3\pi[S] + .5\pi[E] \end{cases}$$

$$\pi[W] + \pi[S] + \pi[E] = 1$$



Fundamental Theorem of Markov Chains: $\forall v$ long run probability of being in state vconverges to $\pi[v]$ $\pi[v] = \sum \pi[u]p_{uv}$

?]

Google and PageRank from notes by Ryan O'Donnell

- 1997
 - Bill Clinton in White House
 - Deep Blue beat world chess champion (Kasparov)

- And the Internet kind of sucked
- Nov '97: only one of the top 4 commercial search engines actually *found itself* when you searched for it!

The Problem

- Search engines worked by matching words
- Top search for Bill Clinton
 `Bill Clinton Joke of the Day' Website

 Deeply susceptible to spammers and advertisers

How to fix?

- Collect pages with decent textual match
- Then rank them by some measure of 'quality' or 'authority'.

- Enter two groups:
 - Jon Kleinberg (prof at Cornell)
 - Larry Page and Sergey Brin (Ph.D. students at Stanford)

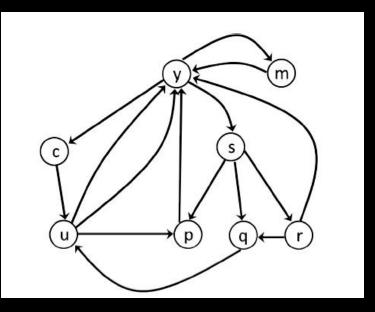
Both had pretty much same brilliant idea ... and it worked!

Two groups:

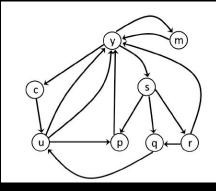
- Larry Page and Sergey Brin (Ph.D. students at Stanford)
 - Took the idea and founded Google, making billions.
- Jon Kleinberg (prof at Cornell)
 - MacArthur Genius Prize, Nevanlinna Prize, many academic honors

PageRank

• Key idea: hyperlink analysis: take into account directed graph structure of the web.



PageRank



- Idea1: "Citations"
 - As with academic publishing, it's a good idea to think of each link to a page as a "citation" or "vote of quality".
 - Rank pages by in-degree?

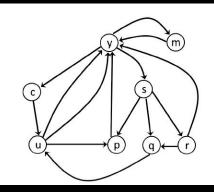
Rank pages by in-degree

- Problem:
 - Spamming
 - Some linkers are not terribly discriminating
 - Not all links are created equal.

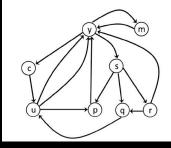
 Perhaps we should weight the links somehow and then use the weights of the in-links to rank pages.

Idea that works well

- Web page has high quality if it's linked to by lots of high quality pages.
- A page is high quality if it links to lots of high quality pages.
- So kind of a recursive definition



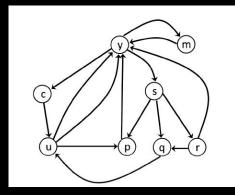
Page and Brin's Idea



- Links convey authority.
- The linker themselves is authoritative if they are heavily linked to (i.e. well-connected in graph)
- Idea: Imagine a "random web surfer"
 - At each step looking at some web page.
 - Transitions to next web page by following a random link from that page.
 - Authority/rank of page: long run probability of being at that page = stationary probability

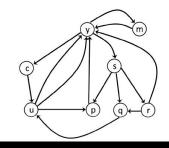
Fundamental Theorem of Markov Chains: $\forall v$ long run probability of being in state vconverges to $\pi[v]$ $\pi[v] = \sum \pi[u]p_{uv}$

?]



Random surfer!!

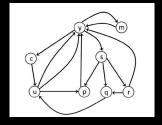
Page and Brin's Idea



- Idea: Imagine a "random web surfer"
 - Compute stationary probabilities for all pages on the web.
 - On a query, find pages containing the query terms.
 Return those pages, ranked in decreasing order of stationary probability.

Problems with Markov Chain approach

• Web pages with no outlinks.



• Spamming: add an entire group of nodes that all link only to each other.

Final Model

- Random surfer model (random walk):
 - On each step, with probability p follow a random real link on the current page
 - With probability 1-p go to a completely random page in the entire web.

$$\pi[v] = \sum \pi[u] p_{uv}$$

Solve this sytem:

 \boldsymbol{u}

Recursive definition always has a unique solution: called stationary distribution of the Markov chain

This was the idea on which Google was founded

• Since 1997, lots more secret sauce added....