Markov Chains and PageRank

Anna Karlin
A first Markov chain

My daily life in a nutshell!
<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>S</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>.4</td>
<td>.6</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>.1</td>
<td>.6</td>
<td>.3</td>
</tr>
<tr>
<td>E</td>
<td>.5</td>
<td>0</td>
<td>.5</td>
</tr>
</tbody>
</table>
\[\mathbf{R}^2 = \begin{pmatrix} W & S & E \\ W & .22 & .6 & .18 \\ S & .25 & .42 & .33 \\ E & .45 & .3 & .25 \end{pmatrix} \]

\[\mathbf{R}^3 = \begin{pmatrix} W & S & E \\ W & .238 & .492 & .270 \\ S & .307 & .402 & .291 \\ E & .335 & .450 & .215 \end{pmatrix} \]

\[\mathbf{R}^{10} \approx \begin{pmatrix} W & S & E \\ W & .2940 & .4413 & .2648 \\ S & .2942 & .4411 & .2648 \\ E & .2942 & .4413 & .2648 \end{pmatrix} \]

\[\mathbf{R}^{30} \approx \begin{pmatrix} W & S & E \\ W & .29411764705 & .44117647059 & .26470588235 \\ S & .29411764706 & .44117647058 & .26470588235 \\ E & .29411764706 & .44117647059 & .26470588235 \end{pmatrix} \]

\[\mathbf{R}^{60} \approx \begin{pmatrix} W & S & E \\ W & .294117647058823 & .441176470588235 & .264705882352941 \\ S & .294117647068823 & .441176470588235 & .264705882352941 \\ E & .294117647068823 & .441176470588235 & .264705882352941 \end{pmatrix} \]
\[\pi[S] = \frac{15}{34}, \pi[W] = \frac{10}{34}, \pi[E] = \frac{9}{34}. \]

\[
\begin{align*}
\pi[W] &= .4\pi[W] + .1\pi[S] + .5\pi[E] \\
\pi[S] &= .6\pi[W] + .6\pi[S] + 0\pi[E] \\
\pi[E] &= 0\pi[W] + .3\pi[S] + .5\pi[E]
\end{align*}
\]

\[\pi[W] + \pi[S] + \pi[E] = 1\]
Fundamental Theorem of Markov Chains:

∀v long run probability of being in state $\pi[v]$ converges to

$$\pi[v] = \sum_u \pi[u] p_{uv}$$
Google and PageRank
from notes by Ryan O’Donnell

• 1997
 – Bill Clinton in White House
 – Deep Blue beat world chess champion (Kasparov)

 – And the Internet kind of sucked

 – Nov ‘97: only one of the top 4 commercial search engines actually found itself when you searched for it!
The Problem

• Search engines worked by matching words

• Top search for Bill Clinton
 – `Bill Clinton Joke of the Day’ Website

• Deeply susceptible to spammers and advertisers
How to fix?

• Collect pages with decent textual match
• Then **rank** them by some measure of ‘quality’ or ‘authority’.

• Enter two groups:
 – Jon Kleinberg (prof at Cornell)
 – Larry Page and Sergey Brin (Ph.D. students at Stanford)
Both had pretty much same brilliant idea ... and it worked!

Two groups:

– Larry Page and Sergey Brin (Ph.D. students at Stanford)
 • Took the idea and founded Google, making billions.

– Jon Kleinberg (prof at Cornell)
 • MacArthur Genius Prize, Nevanlinna Prize, many academic honors
PageRank

- Key idea: hyperlink analysis: take into account directed graph structure of the web.
PageRank

• Idea1: “Citations”
 – As with academic publishing, it’s a good idea to think of each link to a page as a “citation” or “vote of quality”.

 – Rank pages by in-degree?
Rank pages by in-degree

• Problem:
 – Spamming
 – Some linkers are not terribly discriminating
 – Not all links are created equal.

• Perhaps we should weight the links somehow and then use the weights of the in-links to rank pages.
Idea that works well

- Web page has high quality if it’s linked to by lots of high quality pages.
- A page is high quality if it links to lots of high quality pages.
- So kind of a recursive definition
Page and Brin’s Idea

• Links convey authority.
• The linker themselves is authoritative if they are heavily linked to (i.e. well-connected in graph)

• Idea: Imagine a “random web surfer”
 – At each step looking at some web page.
 – Transitions to next web page by following a random link from that page.
 – Authority/rank of page: long run probability of being at that page = stationary probability
Fundamental Theorem of Markov Chains:

\[\forall v \text{ long run probability of being in state } \pi[v] \]

\[\pi[v] = \sum_u \pi[u]p_{uv} \]

Random surfer!!
Page and Brin’s Idea

• Idea: Imagine a “random web surfer”
 – Compute stationary probabilities for all pages on the web.
 – On a query, find pages containing the query terms. Return those pages, ranked in decreasing order of stationary probability.
Problems with Markov Chain approach

• Web pages with no outlinks.

• Spamming: add an entire group of nodes that all link only to each other.
Final Model

- Random surfer model (random walk):
 - On each step, with probability p follow a random real link on the current page
 - With probability $1-p$ go to a completely random page in the entire web.

$$\pi[v] = \sum_{u} \pi[u] p_{uv}$$

Solve this system:

Recursive definition always has a unique solution: called **stationary distribution of the Markov chain**
This was the idea on which Google was founded

• Since 1997, lots more secret sauce added....