Probability & Statistics with Applications to Computing
Key Definitions and Theorems
1 Combinatorial Theory
1.1 So You Think You Can Count?

The Sum Rule: If an experiment can either end up being one of N outcomes, or one of M outcomes (where there is no
overlap), then the total number of possible outcomes is: N + M.

The Product Rule: If an experiment has N7 outcomes for the first stage, No outcomes for the second stage, ..., and N,
outcomes for the m'™ stage, then the total number of outcomes of the experiment is Ny x Ny - ---- N,,, = [, N

Permutation: The number of orderings of N distinct objects is N!=N-(N —1)- (N —-2)-...3-2-1.

Complementary Counting: Let U/ be a (finite) universal set, and S a subset of interest. Then, | S |=|U | — |U\ S |.

1.2 More Counting

k=Permutations: If we want to pick (order matters) only k out of n distinct objects, the number of ways to do so is:

P(n,k):n~(n—1)-(n—2)~...'(n—k+1):(nfi!k)!

k-Combinations/Binomial Coefficients: If we want to choose (order doesn’t matter) only &k out of n distinct objects,
the number of ways to do so is:

_(n\ _ P(n,k) n!
Cln. k) = (k) TR K-k

Multinomial Coefficients: If we have k distinct types of objects (n total), with ny of the first type, ny of the second, ...,
and ny of the k-th, then the number of arrangements possible is

< n > n!
ny, N2, ..., Nk nllngl...nk!

Stars and Bars/Divider Method: The number of ways to distribute n indistinguishable balls into k distinguishable bins
is
n+(k-1)Y\ (n+(k-1)
k—1 N n

Binomial Theorem: Let z,y € R and n € N a positive integer. Then: (z+y)" = > 1_, (Z)xky

1.3 No More Counting Please

n—k

Principle of Inclusion-Exclusion (PIE):

2 events: |[AUB| = |A|+ |B| — |[AN B]

3events: |[AUBUC|=|A|+|B|+|C|-|ANB|—|ANC|—|BNC|+|ANnBNC|
k events: singles - doubles + triples - quads + ...

Pigeonhole Principle: If there are n pigeons we want to put into &k holes (where n > k), then at least one pigeonhole must
contain at least 2 (or to be precise, [n/k]) pigeons.

Combinatorial Proofs: To prove two quantities are equal, you can come up with a combinatorial situation, and show that
both in fact count the same thing, and hence must be equal.

2 Discrete Probability

2.1 Discrete Probability

Key Probability Definitions: Thé sample space is the set € of all possible outcomes of an experiment. Anfevent is
any subset E C Q. Events E and F are mutually exclusive if EN F = ().

Axioms of Probability & Consequences:

1. (Axiom: Nonnegativity) For any event E, P(E) > 0.
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2. (Axiom: Normalization) P (Q) = 1.
3. (Axiom: Countable Additivity) If E and F are mutually exclusive, then P(EU F) = P(E) + P (F).

1. (Corollary: Complementation) P (EY) =1-P(E)
2. (Corollary: Monotonicity) If E C F, then P (F) < P (F)
3. (Corollary: Inclusion-Exclusion)P(EUF)=P(E)+P(F)-P(ENF)

Equally Likely Outcomes: If  is a sample space such that each of the unique outcome elements in €2 are equally likely,

then for any event £ C Q: P(E)= [E|/Q]>
2.2 Conditional Probability

Conditional Probability: P(A | B) = Pﬁl;‘l(g )B)
P(B|A)P(A
Bayes Theorem: P (A | B) = %

Partition: Non-empty events Fj, ..., E, partition the sample space Qif they are both:
e (Exhaustive) By UE, U< UE, =J;_, E; = Q (they cover the entire sample space).
e (Pairwise Mutually Exclusive)®or all i # j, E; N E; = ) ( none of them overlap)

Note that for any event E(E and E€ always form a partition of Q.
Law of Total Probability (LTP): If events Ej,..., E,, partition €2, then for any event F":

n n

P (F) :Z]P’(FOE;) => P(F|E)P(E)

i=1 1=l

Bayes Theorem with LTP: Let events Fy, ..., E, partition the sample space (2, and let F' be another event. Then:

P(F | E)P(E)
Y P(F | E;)P(E))

P(EL|F) =

2.3 Independence

Chain Rule: Let Aq,..., A, be events with nonzero probabilities. Then:

P(Ay,...,A,) =P(41)P(Ay | A1) P (A3 | A1A2)---P(A, | A,..., An—1)

Independence: A and B are independent if any of the following equivalent statements hold:

1. P(A| B) = P(A)

2. P(B|A) =P (B)
3. P(A, B) =P (A)P(B) ‘/

Mutual Independence: We say n events Ay, As,..., A, are (mutually) independent if, for any subset I C [n] =
{1,2,...,n}, we have
P <ﬂ Ai> = H]P’(Ai)
iel iel

This equation is actually representing 2" equations since there are 2" subsets of [n].

Conditional Independence: A and B are conditionally independent given an event C if any of the following
equivalent statements hold:

JI.IP’(ABC’ =P(A|C)
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2. P(B|A,C)=P(B|C)
3. P(A,B|C)=P(A|C)P(B|C)

3 Discrete Random Variables
, ¥redyn p(R=v)>0

3.1 Discrete Random Variables Basics ,“

Random Variable (RV): A random variable (RV) X igfa numeric function of the outcome X : Q — R. The set of possible
values X can take on is its range/support, denoted §x.

If Qx is finite or countable infinite (typically integers or a subset), X is a discrete RV. Else if Qx is uncountably large (the
size of real numbers), X is a continuous RV.

Probability Mass Function (PMF): For a discrete RV X, assigns probabilities to values in its range. That ispx : Qx —
[0, 1] where: px (k) =P (X = k).

Expectation: The expectation of a discrete RV X is: E[X] =57,

3.2 More on Expectation CD® 5 ‘ FX hé [0 \1 F (x\- Pr(X‘.l)

Linearity of Expectation (LoE): For any random variables X,Y (possibly dependent):

E[aX +bY 4+ ¢] =aE [X] +bE[Y] + ¢

Law of the Unconscious Statistician (LOTUS): For a discrete RV X and function g, E[g(X)] = >, cq . 9(b) - px (D).

3.3 Variance "v

Linearity of Expectation with Indicators: If asked only about the expectation of a RV X which is some sort of “count”
(and not its PMF), then you may be able to write X as the sum of possibly dependent indicator RVs X, ..., X,,, and apply
LoE, where for an indicator RV X;, E[X;] =1-P(X;=1)4+0-P(X; =0) =P (X; =1).

Variance: Var(X)=E[(X - E[X])?] =E [X?] - E[X]*.

Standard Deviation (SD): ox = 4/ Var(X).

Property of Variance: Var(aX + b) = a?Var (X).
3.4 Zoo of Discrete Random Variables Part 1

Independence: Random wvariables X and Y are independent, denoted X 1| Y, if for all * € Qx and all y € Qy:
PX=znNY=y)=PX=x)-PY =y).

Independent and Identically Distributed (iid): We say Xi,...,X,, are said to be independent and identically
distributed (iid) if all the X;’s are independent of each other, and have the same distribution (PMF for discrete RVs, or
CDF for continuous RVs).

Variance Adds for Independent RVs: If X 1 Y, then Var(X +Y) = Var (X) + Var (Y )

Bernoulli Process: A Bernoulli process with parameter p is a sequence of independent coin flips X1, X5, X3, ... where
P (head) = p. If flip 4 is heads, then we encode X; = 1; otherwise, X; = 0.

Bernoulli/Indicator Random Variable: (Xs= Bernoulli(p) (Ber(p) for short) iff X has PMF:

E[X] = p and Var(X) = p(1 — p). An example of a Bernoulli/indicator RV is one flip of a coin with P (head) = p. By a
clever trick, we can write
px(k)=p"(1-p)'™", k=01

Binomial Random Variable: (X ~ Binomial(n,p) (Bin(n, p) for short) iff X has PMF

n

px (k) = <k>pk 1-p)" ", keQx=1{01,...,n}

E[X] = np and Var (X) = np(l — p). X is the sum of n iid Ber(p) random variables. An example of a Binomial RV is the
number of heads in n independent flips of a coin with PP (head) = p. Note that Bin(1,p) = Ber(p). As n — oo and p —
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0,with np = A, then Bin(n,p) — Poi(A\). If X;,...,X, are independent Binomial RV’s, where X; ~ Bin(V;,p), then
X=X1+...+ X, ~Bin(Ny + ...+ Np,p).

3.5 Zoo of Discrete Random Variables Part 11
Uniform Random Variable (Discrete)s” X ~ Uniform(a, b)y(Unif(a,b) for short), for integers a < b, iff X has PMF:

1

x (0= vt

keQx ={a,a+1,...,b}

E[X] = “7“’ and Var (X) = W. This represents €ach nteger in [a, b] to bé equally likely. For example, a single roll
of a fair die is Unif(1, 6).

Geometric Random Variable: X '~ Geometric(p) (Geo(p) for short) iff X has PMF:

px (k)=(1—-p) 'p, keQx={1,23,..}
E[X] = % and Var (X) = 11)_2” . An example of a Geometric RV is the number of independent coin flips up to and including
the first head, where P (head) = p.

Negative Binomial Random Variable: X ~ NegativeBinomial(r, p)(NegBin(r,p) for short) iff X has PMF:

k-1 —r
px (k) = <r_1)pr(1—p)k , keQx ={rr+1,r+2,...}

P
the number of independent coin flips up to and including the r-th head, where P (head) = p. If Xy,..., X,, are independent
Negative Binomial RV’s, where X; ~ NegBin(r;,p), then X = X3 + ...+ X,, ~ NegBin(r1 + ... + 7, p).

3.6 Zoo of Discrete Random Variables Part III
Poisson Random Variable:sn X ~ Poisson(A) (Poi(A)for short) iff X has PMF:

E[X] =Z and Var(X) = %. X is the sum of r iid Geo(p) random variables. An example of a Negative Binomial RV is

)\k
px (k) = e—AE, keQx =1{0,1,2,...}

E[X] = X and Var(X) = X. An example of a Poisson RV is the number of people born during a particular minute,
where A is the average birth rate per minute. If X;,..., X, are independent Poisson RV’s, where X; ~ Poi(};), then
X=X1+...+ X, ~Poi(A +...+ \p).

Hypergeometric Random Variable: X ~ HyperGeometric(N, K,n) (HypGeo(N, K, n) for short) iff X has PMF:
K\ (N-K
() Gaie)
(%)

E[X] = n¥ and Var(X) = n% This represents the number of successes drawn, when n items are drawn from

a bag with N items (K of which are successes, and N — K failures) without replacement. If we did this with replacement,
then this scenario would be represented as Bin (n, %)

px (k) = , ke Qx ={max{0,n+ K — N},..., min{K,n}}

4 Continuous Random Variables

4.1 Continuous Random Variables Basics

Probability Density Function (PDF): The probability density function (PDF) of a continuous RV X is the function
fx : R — R, such that the following properties hold:

o fx(2)>0forall zeR
° ffooo fx@)dt=1

e Pla< X <b)= [ fx(w)duw

Cumulative Distribution Function (CDF): The.eumulative distribution function (CDF) of ANY random variable
(discrete or continuous) is defined to be the function ExsRe= R with Fx () = P (X < t). If X is a continuous RV, we have:
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o Fx() =P (X <t) = ['__ fx(w) dw for all t € R
o LFx(u) = fx(u)

Univariate: Discrete to Continuous:

Discrete Continuous
PMF /PDF px(x) =P (X =) fx@)#P(X =2)=0
CDF Fx (@)= S ,0px(0 | Fx @ =] fx O
Normalization Y o.px(x)=1 [ fx(@)de=1
Expectation/LOTUS | E [¢(X)] = 3, ¢(@)px (@) [BIgC0] = | gle)x (&) de

4.2 Zoo of Continuous RVs
Uniform Random Variable (Continuous)i X ~ Uniform(a,b) (Unif(a,b) for short) iff X has PDF:

1 .
| 5 ifzeQx =[q,b]
fx (@) = { 0 otherwise

E[X] = %t and Var (X) = % This represents each real number from [a, b] to be equally likely. Do NOT confuse this
with its discrete counterpart!

Exponential Random Variable: X ~ Exponential(A) (Exp()\) for short) iff X has PDF:

Ae™ if 2 € Qx = [0,00)
Fx (@) = { 0 otherwise
E[X] = } and Var (X) = 5. Fx (&) = 1=€ *@or x > 0. The exponential RV is the continuous analog of the geometric
RV: it represents the waiting time to the next event, where A > 0 is the average number of events per unit time. Note that
the exponential measures how much time passes until the next event (any real number, continuous), whereas the Poisson
measures how many events occur in a unit of time (nonnegative integer, discrete). The exponential RV is also gnemoryless:

for any s,t >0, P(X >s+t| X >s) =P (X > 1)

Gamma Random Vafiable: X ~ Gamma(r,A) (Gam(r, A) for short) iff X has PDF:

e AT 2 e Qx = [0,00)

E[X] = Zand Veg(X) = 5. X is the sum of r iid Exp()\) random variables. In the above PDF, for positive integers 7,
I'(r) s/(r — 1)! (a nortmalizing constant). An example of a Gamma RV is the waiting time until the r-th event in the Poisson
prodess. If X5, ..., X, are idependent Gamma RV’s, where X; ~ Gam(r;, A), then X = X;+...+X,, ~ Gam(r1+...4+7,, \).
It also serves as a conjugate prior for A in the Poisson and Exponential distributions.

4.3 The Normal/Gaussian Random Variable
Normal (Gaussian, “bell curve”) Random Variable: X ~ N (u, ¢°) iff X has PDF:

1 _1e-w? C
r)=——¢€ 2 2 | z€0x =R
fx (@) gy X
E[X] = p and Var (X) = 0%, The “standard normal” random variable is typically denoted Z and has mean 0 and variance 1:
if X ~N(u, 02), then Z = % ~ N(0,1)..The CDF has no closed form, but we denote the CDF of the standard normal as
D (z) = Fz (2) =P (Z < z). Note from symmetry of the probability density function about z = 0 that: ® (—z) =1 — ®(z).

Closure of the Normal Under Scale and Shifts Tf X ~ M(u,02), the aX + b ~/N(au + b,a*s?). \In particular, we
can always scale/shift to get the standard Normal: % ~ N(0,1).

Closure of the Normal Under Addition: If X ~ N (ux,0%) and Y ~ N (uy,0%) are independent, then

aX +bY +c~ N(apux + buy + ¢, a’c% + b%c?
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4.4 Transforming Continuous RVs
Steps to Z%PDF of Y = g(X) from X (via CDF): Suppose X is a cgfitinuous RV.

€ Qx, PDF fx, and CDF Fx.

1. Write down the ra

3. Start computing the CDF of <2, in terms of Fx.
4. Differentiate the CDF Fy (y) to get t y. fy is 0 outside Qy .

Explicit Formula to compute PDF of Y =g m X (Univariate Case): Suppose X is a continuous RV. f Y =
9(X) and g : Qx — Qy is strictly monotone and i with inverse X = g=1(Y) = h(Y), then

if Y € Qy
otherwise

Explicit Formula to compute
(Y1, ...,Y,,) be continuous rando
and Y = g(X) where g : Qx

F of Y = g(X) from X (Multivaria
ectors (each component is a continuous rv) wi
Qv is invertible and differentiable, with differentiab

Fe(y) = fx(h(y)) ‘det (82_(;))‘

ase): Let X = (Xy,..X,), Y =
e same dimension n (so Qx,Qy C R™),
iverse X = g~ 1(y) = h(y). Then,

—

nxn

where (ah(y

Dy is the Jacobian matrix of partial derivatives of h, with

5 Multiple Random Variables

5.1 Joint Discrete Distributions

Cartesian Product of Sets: The Cartesian product of sets A and B is denoted: A x B ={(a,b):a € A,b € B}
Joint PMFs: Let Xy¥be discrete random variables. Thé joint PMFE of X and Y is:

W:PX:a,Y:b) ¢Jl*

The joint range is the set of pairs (¢, d) that have nonzero probability:

QX,Y - {(C, d) ZpX,y(C, d) > 0} (§ QX X Q‘

Note that the probabilities in the table must sum to 1:

Z pX7y(5,t) =1

(S,t)eﬂxyy

Further, note that if g : R> — R is a function, then LOTUS extends to the multidimensional case:

ElgY)= > > 9@ ypxy(z,y)

z€Qx yeQy t

Marginal PMFs: Let X,Y be discrete random variables. The marginal PMF of X is: px(a) = ,cq, pPx v (a,b).
————

P
Independence (DRVs): Discrete RVs X, Y are independent, written X | Y, if for alls € Qx and y € stpx,y(."lf, y) =
px (z)py (y)-
Variance Adds for Independent RVs: If X | YV, then: Var (X +Y) = Var (X) + Var (V).







Alex Tsun Probability & Statistics with Applications to Computing 7

Y

5.2 Joint Continuous Distributions

Joint PDFs: Let X,Y be continuous random variables. The joint PDF of X and Y is: b e
fxy(a,0) >0
The joint range is the set of pairs (¢, d) that have nonzero density: %
®

QX,Y = {(C,d) : fX’Y(C,d) > 0} - QX X Qy

Note that the double integral over all values must be 1:

/ / fxy(u,v)dudv =1

Further, note that if g : R? — R is a function, then LOTUS extends to the multidimensional case:

[9(X,Y)] = /700 /700 g(s,t) fx,y (s, t)dsdt

The joint PDF must satisfy the following (similar to univariate PDFs):
Pla<X <bc<Y <d)= //fxyxy)dydx

Marginal PDFs: Let X,Y be continuous random variables. The marginal PDF of X is: fx(x f fxv(z,y)dy.

Independence of Continuous Random Variables: Continuous RVs XY are independent, written X L Y, if for all
z € Qx and y € Qy, fxv(z,y) = fx(@)fv(Y)
5.3 Conditional Distributions

Conditional PMFs and PDFs: If X,Y are discrete, the conditional PMF of X given Y is:

px,y(a,b)  pyx(b]a)px(a)
py (b) N PY(b)

Similarly for continuous RVs, but with f’s instead of p’s (PDF's instead of PMF's).

pxjy(a]b) =P(X =a|Y =b)=

Conditional Expectation If X is discrete (and Y is either discrete or continuous), then we define the conditional expec-
tation of g(X) given (the event that) Y =y as:

B\R) =P P <3 Pl o)

If X is continuous and Y is either discrete or continuous), then

oo

B0 |Y =4l = [ g@fay(e]g)do

— 00

Notice that these sums and integrals are over z (not y), since E [g(X) | Y = y] is a function of y.

Law of Total Expectation (LTE): Let X,Y be jointly distributed random variables.
If Y is discrete (and X is either discrete or continuous), then:

Elg(X)] = Y Elg(X)|Y =y|py(y)

yEQy

If Y is continuous (and X is either discrete or continuous), then

Ewmnzf E[g(X) | Y = 4] fr (¥)dy

—0Q0

Basically, for E [g(X)], we take a weighted average of E [¢(X) | Y = y| over all possible values of y.
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Multivariate: Discrete to Continuous:

Discrete Continuous
Joint Dist pxy(z,y) =P(X=2Y =y) fxy(x y)#P( =12,V =y)
Joint CDF Fxy (2,4) = Y icpacy PX,Y (t: 5) Fxy (z,y) f fy Ix.y (t,s)dsdt
Normalization dowyPxy(zy) =1 8 f Ifxy (x y) dzdy = 1
Marginal Dist px(z) =, px,y(z,y) fx(z f Ix,y(z,y)dy
Expectation EgX,Y)=>,,9@ypxy(xy) | Elg (X V)= [ [g(z,y)fxy(z y)dzdy
Conditional Dist | px|y(z]y) = p’(p;’ig;y) Ixyy(zly) = fxfii((;y)
Conditional Exp | E[X|Y =y] =}, zpx)v(z]y) EX|Y =y]=["__ .fo‘y(l‘ly)
Independence Va,y,px.y (z,y) = px (z)py (y) Va,y, fxy (@, y) = fx(@)fy (y)

5.4 Covariance and Correlation
Covariance: The covariance of X and Y is:

Cov(X,)Y)=E[(X —-E[X))(Y -E[Y])]=E[XY]-E[X]|E[Y]
Covariance satisfies the following properties:

1. f X 1Y, then Cov(X,Y) = 0 (but not necessarily vice versa).

2. Cov(X,X) = Var(X). (Just plugin Y = X).

3. Cov(X,Y) = Cov (Y, X). (Multiplication is commutative).

4. Cov (X +¢,Y) =Cov(X,Y). (Shifting doesn’t and shouldn’t affect the covariance).

5. Cov(aX +bY,Z) =a-Cov(X)Z+b-Cov (Y, Z). This can be easily remembered like the distributive property of scalars
(aX +bY)Z = a(XZ) + b(Y Z).

6. Var (X +Y) = Var(X) + Var (Y) + 2Cov (X,Y), and hence if X LY, then Var(X +Y) = Var(X) + Var (V).

7. Cov (Z?:l Xiy iy Yi) >ie1 2y Cov(X;,Y;). That is covariance works like FOIL (first, outer, inner, last) for
multiplication of sums ((a + b+ ¢)(d + €) = ad + ae + bd + be + cd + ce).

(Pearson) Correlation: The (Pearson) correlation of X and YV is:i p(X,Y) = \/%)i/};)—
ar ar

It is always true that —1 < p(X,Y) < 1. That is, correlation is just a normalized version of covariance. Most notably,
p(X,Y) =41 if and only if Y = aX + b for some constants a,b € R, and then the sign of p is the same as that of a.

Variance of Sums of RVs: Let Xi,...,X,, be any RVs (independent or not). Then,

ar (Zn: Xi> = zn:Var(Xi) + QZCOV (Xs, X5)

1<j

5.5 Convolution

Law of Total Probability for Random Variables:
Discrete version: If X, Y are discrete:

px () Y) =4 pxiy (@ | ¥)py (y)

Continuous version: If X, Y are continuous:

[

Convolution: Let X, Y be independent RVs, and Z =X + Y.
Discrete version: If X, Y are discrete: T?
[ J
Z px (2)py (2 — ) L

€N x

L= [ N fr (v)dy
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Continuous version: If X, Y are continuous:

(& Cor LTV

fa(z) = / L Ix@f =y

5.6 Moment Generating Functions

): Mx(t) =E [e"X].

variable ¢ (use LOTU compute this

Properties and Uniquendgs of Moment Generating ctions: For a function f : R — R, we will denote f(™ (z) to
be the n-th derivative of f(z).
following properties:

1. M%(0) = E[X], M%(0) = E [X2]}
function, as we can use it to generate t

2. Myx4b(t) = et® Mx (at).
3. If X L Y, then MX+Y(t) = MX

That is Mx uniquely identifies a distribution, just like PDFs/PMFs or CDF's do.

5.7 Limit Theorems

The Sample Mean + Properties: Let X;, X5,...,X, be a sequence of iid RVs with mean p and variance ¢?. The
sample mean is: X, = %2?21 X;. Further, E [X'n] = p and Var ()_(n) =0o2%/n

The Law of Large Numbers (LLN): Let X;,..., X, be iid RVs with the same mean p. As n — oo, the sample mean

X, converges to the true mean pu.

The Central Limit Theorem (CLT): Let Xj,...X,, be a sequence of iid RVs with mean p and (finite) variance o2.

Then as n — oo,
— 0'2
X, =N (m—)
n

The mean or variance are not a surprise; the importance of the CLT is, regardless of the distribution of X;’s, the sample
mean approaches a Normal distribution as n — oo.

The Continuity Correction: When approximating an integer-valued (discrete) random variable X with a continuous one
Y (such as in the CLT), if asked to find a P (a < X < b) for integers a < b, you should use P (a — 0.5 <Y < b+ 0.5) so that
the width of the interval being integrated is the same as the number of terms summed over (b — a + 1).

5.8 The Multinomial Distrib

Random Vectors (R
Expectation is defined pointwi

1, .-y Xp be random variables. We say X = (Xq,... ,Xn)T is a random vector.
X] = (E[X1],...,E[X,])T.
atrix of a random vector X € R” with E [X] = g is the matrix ¥ = Var (X) =

Covariance Matrices:
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Cov (X) whose endjes ¥;; = Cov (X;, X;). The formula for this is:

Var (X7) Cov (X7, X5) Cov (X1, X,)
COV(XQ,Xl) Var(Xg) COV(XQ,Xn

,Xl) Cov (Xn,XQ)

Notice that the covariance matrix is symme (Xi; = X,;), and beS variances on the diagonal.

es, with probabilities p = (p1,pa, ..., pr) respectively, such
let Y = (Y1,Y5,...,Y,) be the rvtr of counts of each outcome.

The Multinomial Distribution: Suppose theréSre r outg
that >°;_, p; = 1. Suppose we have n independent tr1
Then, we say Y ~ Mult,(n, p):

The joint PMF of Y is:

Notice that each Y; is margi
Then, we can specify th

The Multivariate Hypergeometric (MVHG) Distribution: Suppose there are r different g6lors of balls in a bag,
having K =K1, ..., K) balls of each color, 1 <i <r. Let N = >_!_, K; be the total number of bals in the bag, and suppose
we draw n without replacement. Let Y = (Y7, ...,Y;.) be the rvtr such that ¥; is the number g#balls of color ¢ we drew. We
write that Y ~ HG, (N, K,n) The joint PMF of Y is:

e ()
()

Notice that each Y; is marginally HNgGeo(V, K;,n), so E [Y;] = nlfv and
Ki N — Kz N—n

,
Py, (k1 k) = , 0<k <Kforalll<igfand Y k. =n
=1

Var (Y;) = n I N1 The Myean vector E[Y] and covariag€e matrix are:
K,
K |’V K. N- Y N—n K, K; N—n
EY] = ne = . Var (Y; ’ i D i C Y;.Y<:_717_]. —
Yi=ny=| i | V(9 T Cov(v Yy = —mpind 2T
nJ
N

5.9 The Multivariate Normal Distrifution

Properties of Expectation and Variancg#Hold for RVTRs:NLet X be an n-dimensional RVTR, A € R™"*" be a con-
stant matrix, b € R™ be a constant vectgpf Then: E[AX + b] = AE [W+ b and Var (AX + b) = AVar (X) AT.
The Multivariate Normal Distridfition: A random vector X = (X, ..., X,,) has a multivariate Normal distribution

with mean vector p € R™ and (syffimetric and positive-definite) covarianceSgatrix ¥ € R™*"  written X ~ N, (p, ), if it
has the following joint PDF:

_ 1 1 Ty —1 n
fx(w)—Wexp (‘2(-’3—10 by (fB—H)>7 zeR
Additionally, let usp€call that for any RVs X andY: X L Y — Cov(X,Y)=0. If X = ,- ., X;) is Multivariate Normal,

the converse alsofolds: Cov (X;, X;) =0— X; L X;.
5.10 Ordgr Statistics

Order Statistics: Suppose Y7, ..., Y, are iid continuous random variables with common PDF fy %gd common CDF Fy.
We sort the Y;’s such that Y, = Y1) < Y(9) < ... <Y(,) = Yiax-
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Notice that we can’t have equa because with continuous random variables, the probability that any two are equal is 0.
Notice that each Y(;) is a random va € 1th order statistic, i.e. the ith smallest in a sample of
size n. The density function of each Y is

fyo W) = (Z — 1,71L7n—i> .

6 Concentration Inequalities

- Fy ()] fy(y),y € Qy

6.1 Markov and Chebyshev Inequalities

Markov’s Inequality: Let X > 0 be a non-negative RV, and let & > 0. Then: P(X > k) < %
Chebyshev’s Inequality: Let X be any RV with expected value u = E[X] and finite variance Var (X). Then, for any real
number o > 0. Then, P (| X — u| > a) < Va;(QX).
6.2 The Chernoff Bound
Chernoff Bound for Binomial: and let y = E[X]. For any 0 < § < 1:
P(X > (1+0)p) <ex and  P(X < (1—6)u) < exp <_527“>
6.3 Even More Inequalities
The Union Bound: Let Ej, Es, ..., E,, be a collection of events. Then: P(|J:, E;) < > P(E;)

A similar statement also holds if the ni§nber of events is countably infinite.

Convex Sets: A set S C R" is a conve¥ set if for any x1,...,2, €S

Convex Functions: Let S C R” be a convex set. i : ¥ a convex function if for any z1,...,z,, € S,
and p1, ...,pm, > 0 such that >0 p; = 1,

i) with mean p, then

2n2t?
<2 —— | =2
1) s2e9 (750 2o (g

7 Statistical Estimation

7.1 Maximum Likelihood Estimation

Realization / Sample: A realization/sample z of a random variable X is the value that is actually observed (will always
be in Qx).
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Likelihood: Let x = (21, ..., 2,,) be iid realizations from PMF px (¢ | 0) (if X is discrete), or from density fx (¢ |6) (if X is
continuous), where € is a parameter (or vector of parameters). We define the likelihood of x given 6 to be the “probability”
of observing x if the true parameter is 6. The log-likelihood is just the log of the likelihood, which is typically easier to
optimize.

If X is discrete,

L(x|0)= Han:,|9 InL(x|6) = Zlanxl|6

If X is continuous,

L(x|9):ﬁfX(xi|9) InL(x|6) = Zlnfxxzw
i=1

Maximum Likelihood Estimator (MLE): Let x = (21, ..., z,,) be iid realizations from probability mass function px (¢ | )
(if X is discrete), or from density fx (¢ | 0) (if X is continuous), where 6 is a parameter (or vector of parameters). We define
the maximum likelihood estimator (MLE) Or 15 of 0 to be the parameter which maximizes the likelihood /log-likelihood:

Orrp = arg max L(x|6) = arg max InL(x|6)

7.2 MLE Examples
7.3 Method of Moments Estimation

Sample Moments: Let X be a random variable, and ¢ € R a scalar. Let x4, ..., z, be iid realizations (samples) from X.

The k" sample moment oR X is: = > 7" | a¥.
about c) is: - 3" (z; — )k

Method of Moments Estimatio
or from density fx(¢;60) (if X continu

The k** sample moment of

Let = (x1,...,x,) be iid realizations (gfmples) from PMF px (¢;6) (if X is discrete),
, where 6 is a parameter (or vectorgff parameters).

We then define the Method of Mome of § = (61,...,0;) to be a solution (if it ex-

ists) to the k simultaneous equations where,

E[X] =15

Beta Random Variable: X ~ Beta(a, ), if and onl

we pretend we’ve seen o — 1 successes
st density) arg max fx(x), is
z€[0,1]

)

X is typically the belief distribution abougSome unknown probability of success, w
and § — 1 failures. Hence the mode (mg#t likely value of the probability/point with h

_ —1
mode[X] = (a—l(;-f—(,@‘—l)
Also note that there is an annoying “off-by-1” issue: (o — 1 heads and S — 1 tails), so when choosing these parameters, be

careful! It also serves as a conjugate prior for p in the Bernoulli and Geometric distributions.

Dirichlet RV: X ~ Dir(af3 a,), if and only if X has the following density function:

z; €(0,1) and Y| jz; =1

otherwise
This is a generalization of the Beta random vari om 2 outcomes to 7. The random vector X is typically the belief
distribution about some unknown probabilities t outcomes, where we pretend we saw a; — 1 outcomes of type
1, as — 1 outcomes of type 2, ..., and a, e r . Hence, the mode of the distribution is the vector,

arg max fx(x), is

z€[0,1]¢ and > z;=1
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mode[X] = ( Lol

i=1 (az

as—1 a,—1 )
-1 > (ai—1)7 " 300 (ai—1)

7.5 Maximum A Posteriori Estimation

Maximum A Posteriori (MAP) Esti
discrete), or from density fx(t; © = 0) (if i ere O is the random variable representing the parameter (or

7.6 Properties of Estimators I

Bias: Let 0 be an estimator for . The bias of § as an estimator for 6 is Bias(f, ) = E {é] — 6. If Bias(d,0) = 0, or

equivalently E [é] = 6, then we say 0 is an unbiased estimator of 6.

A - = -
Mean Squared Error (MSE): The mean squared error (MSE) of an estimator 6 of 6 is MSE(6,0) = E [(9 = 0)2].

If 6 is an unbiased estimator of 6 (ie. E {QA} = 0), then you can see that MSE(@,H) = Var (é) In fact, in general
MSE(8,0) = Var (0) + Bias(6, 0)>.
7.7 Properties of Estimators 11

tor 6,, (depending on n iid samples) of 6 is said to be consistent if it converges (in probability) to
P(|én—9| >a) —0.
OO

Consistency: An esti

0. That is, for any € > 0, §
n

Fisher Information: Let x
fx(t]0) (if X is continuous),
is defined to be

(21, ..., zp) be iid realizations from PMF px (¢ | 6) (if
ere 0 is a parameter (or vector of parameters). The,

o ftn)] o

Cramer-Rao Lower Bound (CRLB): = ii ightions from PMF px (¢t | 6) (if X is discrete), or

from density function fx (¢ | 0) (if X is con
estimator for 6, then

s discrete), or from density function
isher Information of a parameter 6

1
1(6)
That is, for any unbiased estimator 6 for 6, the varian is at least ﬁ. If we achieve this lower bound, meaning
our variance is exactly equal to ﬁ, then we have the be riance possible for our estimate. Hence, it is the minimum

variance unbiased estimator (MVUE) for 6.

Efficiency: Let 6 be an unbiased estimator of . The

An estimator is said to be efficient if it achieves

7.8 Properties of Estimators 111

Statistic: A statistic is any function 7" :
sum), T'(z1,...,T,) = max{zy,..., Ty}
Sufficiency: A statistic 7' = T'(X;
T =t and 6 does not depend on 6,

— R of samples x = (x1, ... Npor example, T'(z1,...,2,) = > o, ; (the
e max/largest value), T'(x1,...,2,) = 1 (just take the first sample)

.., X,) is a sufficient statistic if the coditional distribution of Xi,...,X,, given

P =z1,....Xpn=a,|T=¢0)=P(X; =x1,..., X, =z, |

mples with likelihood
ions g and h such that:

Neyman-Fisher Factoriz}fﬂ)n Criterion (NFFC): Let xy,...,z, be iid random
L(xy,...,2,|0). A statisti T = T(x1,...,2,) is sufficient if and only if there exist non-negative fun
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L(zy,...,xy | 0) =g(x1,...,2,) (T (x1,...,2,), 0)

8 Statistical Inference

8.1 Confidence Intervals

Confidence Interval: Suppose you have iid samples z1,...,z, from some distribution with unknown parameter 6, and you
have some estimator 6 for 6.

A 100(1 — @)% confidence interval for 6 is an interval (typically but not always) centered at 6, [é — A, + Al such that

the probability (over the randomness in the samples x71,...,x,,) 0 lies in the interval is 1 — «:
]P’(Ge [é—A,éjLAD 1.

If 6 = % >i | x; is the sample mean, then 0 is approximately normal by the CLT, and a 100(1 — «)% confidence interval is
given by the formula:

It

) and o is the true standard deviation of a single sample (which may need to be estimated).

~ O
{9 —Z1—aj2—7= 0+ 21-a/2

o
2

8.2 Credible Intervals

where 21 _q /9 = o1 (1 —

Credible Intervals: Suppose you have iid samples x = (1, ...,%,) from some distribution with unknown parameter ©.
You are in the Bayesian setting, so you have chosen a prior distribution for the RV ©.

A 100(1 — a)% credible interval for © is an interval [a, b] such that the probability (over the randomness in ©) that O lies
in the interval is 1 — a:
PO€Ea,b)=1-a

If we’ve chosen the appropriate conjugate prior for the sampling distribution (like Beta for Bernoulli), the posterior is easy
to compute. Say the CDF of the posterior is Fy. Then, a 100(1 — «)% credible interval is given by

5 (5) A (1-3)]

8.3 Introduction to Hypothesis Testing
Hypothesis Testing Procedure:

1. Make a claim (like ” Airplane food is good”, ”Pineapples belong on pizza”, etc...)
2. Set up a null hypothesis Hy and alternative hypothesis H 4.

(a) Alternative hypothesis can be one-sided or two-sided.
(b) The null hypothesis is usually a ”baseline”, "no effect”, or ”benefit of the doubt”.

(c) The alternative is what you want to "prove”, and is opposite the null.
3. Choose a significance level a (usually a = 0.05 or 0.01).
4. Collect data.
5. Compute a p-value, p = P (observing data at least as extreme as ours | Hy is true).
6. State your conclusion. Include an interpretation in the context of the problem.

(a) If p < «, "reject” the null hypothesis Hy in favor of the alternative H 4.
(b) Otherwise, ”fail to reject” the null hypothesis Hy.
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