
A glimpse of auction theory
(continued) +

distinct elements

Anna Karlin

Agenda
● Finish up glimpse of auction theory
● Distinct Elements

Auctions
● Companies like Google and Facebook make most of their

money by selling ads.
● The ads are sold via auction.

○ Advertisers submit bids for certain “keywords”

An auction is a …
● Game

○ Players: advertisers

○ Strategy choices for each player: possible bids

○ Rules of the game – made up by Google/Facebook/whoever is
running the auction

● What do we expect to happen? How do we analyze
mathematically?

Special case: Sealed Bid single item auction
● Say I decide to run an auction to sell my laptop and I

let you be the bidders.
● If I want to make as much money as possible – what should

the rules of the auction be?
Some possibilities:
● First price auction: highest bidder wins; pays what they

bid.
● Second price auction: highest bidder wins; pays second

highest bid.
● All pay auction: highest bidder wins: all bidders pay

what they bid.

Which of these will make me the most money?

Bidder model
Each bidder has a value, say vi for bidder i.

Bidder is trying to maximize their “utility” –
the value of the item they get – price they pay.

Distinct elements

Anna Karlin
With many slides by Luxi Wang, Shreya Jayaraman,

Alex Tsun and Jeff Ullman

Data mining
● In many data mining situations, the data is not known

ahead of time.

● Examples:

○ Google queries

○ Twitter or Facebook status updates

○ Youtube video views

● In some ways, best to think of the data as an infinite
stream that is non-stationary (distribution changes over
time)

Stream model
● Input elements (e.g. Google queries) enter/arrive one at

a time.
● We cannot possibly store the stream.

Question: How do we make critical calculations about the
data stream using a limited amount of memory?

Sources of this kind of data
● Sensor data

○ E.g. millions of temperature sensors deployed in the ocean

● Image data from satellites or surveillance camers

○ E.g. London

● Internet and web traffic

○ E.g. millions of streams of IP packets
● Web data

○ E.g. Search queries on Google, clicks on Bing, etc.

Example Applications
● Mining query streams

○ Google wants to know which queries are more frequent today than
yesterday.

● Mining click streams

○ Facebook wants to know which of its ads are getting an unusual number
of hits in the last hour.

● Mining social network news feeds

○ E.g., looking for trending topics on Twitter and Facebook, trending
videos on TikTok

More Applications
● Sensor networks

○ Many sensors feeding into a central controller.

● IP packets

○ Gather congestion information for optimal routing

○ Detect denial-of-service attacks

Problem
● Input: sequence of 𝑁 elements 𝑥!, 𝑥", … , 𝑥# from a known

universe 𝑈 (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single
left to right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while
maintaining working “summary”

What can we compute?

● Some functions are easy:

○ Min

○ Max

○ Sum

○ Average

Counting distinct elements

Applications:
● IP packet streams: How many distinct IP addresses or IP

flows (source+destination IP, port, protocol)

○ Anomaly detection, traffic monitoring

● Search: How many distinct search queries on Google on a
certain topic yesterday

● Web services: how many distinct users (cookies)
searched/browsed a certain term/item

○ Advertising, marketing trends, etc.

Another application
You are the content manager at
YouTube, and you are trying to
figure out the distinct view
count for a video. How do we do
that?

Note: A person can view their
favorite videos several times,
but they only count as 1 distinct
view!

Counting distinct elements

● Want to compute number of distinct keys in the stream.

● How to do this without storing all the elements?

● Yet another super cool application of probability (and
hashing)

A naive solution, counting!

Store the n distinct user IDs
in a hash table.

Space requirement: O(n)

Considering the number of users of youtube, and the
number of videos on youtube, this is not feasible.

Definition of
Expectation

Consider a hash function
For distinct values in , the
function maps to iid (independent and
identically distributed) Unif(0,1)
random numbers.

Note that, if you were to feed in two
equivalent elements, the function
returns the same number.

Min of IID Uniforms

Min of IID Uniforms

Min of IID Uniforms

A super duper clever idea

32 5 17 32 14 5 32 32 17

The Distinct Elements Algorithm

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = infty

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.51

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

h

Return
round(1/0.26 - 1) =
round(2.846) =
3

Diy: Distinct Elements Example II
Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9

Summary so far

Problem

How can we reduce the variance?

Coding on pset 6

Definition of
Expectation

You will use a hash function
For distinct values in , the function
maps to iid (independent and identically
distributed) Unif(0,1) random numbers.

Note that, if you were to feed in two
equivalent elements, the function returns
the same number.

We will implement the hash function for
you! Just know that you can consider it an
iid uniform continuous random variables
for each of the values being hashed.

1. we will keep track of K DistElts classes each with its own independent hash
function

2. take the mean of our K mins to get a better estimate of the min
3. and then apply the same trick as earlier to give an estimate for the number

of distinct elements based on this min that we saw.

To do better…

END PIC

