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AUCTIONS

® Companies like Google and Facebook make most of their
money by selling ads.
® The ads are sold via auction.

Facebook Ads bidding... @ Is this an auction?

Yes! That's the first thing you need to understand to
master bidding management of Facebook Ads. When ’,
you’re creating a new campaign, you’re joining a

huge, worldwide auction.

You’ll be competing with hundreds of thousands of
advertisers to buy what Facebook is selling: Real

estate on the News Feed, Messenger, Audience

Network, and mobile apps to display your ads to the users.




AN AUCTION TS A ..

® (Game
o Players: advertisers
o Strategy choices for each player: possible bids

o Rules of the game - made up by Google/Facebook/whoever is
running the auction

® What do we expect to happen? How do we analyze
mathematically?



SPECTAL CASE: SEALED BID SINGLE ITEM AUCTION

e Say I decide to run an auction to /sell my laptop and I

let you be the bidders.

e If I want to make as much money as possible - what should
the rules of the auction be?

Some possibilities:

® First price auction: highest bidder wins; pays what they
bid.

e Second price auction: highest bidder wins; pays second
highest bid.

e All pay auction: highest bidder wins: all bidders pay
what they bid.

Which of these will make me the most money?

Bddn [ & > 2 K .
Bads ) g\ 36 Ay &




ot eﬁ‘-\ \QQ Q Qo
Pm,\w\— W 3¢ o 0 0O

BIDDER MODEL Y

Wt
Each bidder has a value, .Say v.; for bidder 1. y@ 0‘3”,_.
privale Wos SONON . Dk

Bidder 1is trying to maximize their “utility” -
the value of the 1item they get - price they pay.
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DISTINCT ELEMENTS



DATA MINING

® In many data mining situations, the data is not known
ahead of time.

e Examples:

0 Google queries

0 Twitter or Facebook status updates

o Youtube video views

® In some ways, best to think of the data as an infinite
stream that is non-stationary (distribution changes over

time)



STREAM MODEL

e Input elements (e.g. Google queries) enter/arrive one at
a time.
® We cannot possibly store the stream.

Question: How do we make critical calculations about the
data stream using a limited amount of memory?



SOURCES OF THIS KIND OF DATA

® Sensor data

0 E.g. millions of temperature sensors deployed in the ocean

® Image data from satellites or surveillance camers

© E.g. London
® Internet and web traffic

0 E.g. millions of streams of IP packets

® Web data

0 E.g. Search queries on Google, clicks on Bing, etc.



EXAMPLE APPLICATIONS

® Mining query streams

O Google wants to know which queries are more frequent today than
yesterday.

® Mining click streams

0 Facebook wants to know which of dits ads are getting an unusual number
of hits in the last hour.

® Mining social network news feeds

o E.g., looking for trending topics on Twitter and Facebook, trending
videos on TikTok



MORE APPLICATIONS

® Sensor networks

O Many sensors feeding into a central controller.

e TP packets

O Gather congestion information for optimal routing

O Detect denial-of-service attacks



PROBLEM =

® Input: sequence of N elements xq,x;,..,xy from a known
universe U (e.g., 8-byte 1integers).

® Goal: perform a computation on the 1input, in a single
left to right pass where
O Elements processed in real time

0 Can’t store the full data. => use minimal amount of storage while
maintaining working “summary”



WHAT CAN WE COMPUTE?
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e Some functions are easy:

Min
o Max
O  Sum

O Average



COUNTING DISTINCT ELEMENTS
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Applications:

® IP packet streams: How many distinct IP addresses or IP
flows (source+destination IP, port, protocol)

0 Anomaly detection, traffic monitoring

® Search: How many distinct search queries on Google on a
certain topic yesterday

® Web services: how many distinct users (cookies)
searched/browsed a certain term/item

o Advertising, marketing trends, etc.



ANOTHER APPLICATION

You are the content manager at
YouTube, and you are trying to
figure out the distinct view
count for a video. How do we do
that?

Note: A person can view their
favorite videos several times,

but they only count as 1 distinct
view!



COUNTING DISTINCT ELEMENTS
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e Want to compute number of distinct keys 1in the stream.

® How to do this without storing all the elements?

® Yet another super cool application of probability (and
hashing)



A NALVE SOLUTION, COUNTING!

Store the n distinct user IDs

in a hash table. ~s\\1\3
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CONSIDERING THE NUMBER OF USERS OF YOUTUBE, AND THE
NUMBER OF VIDEOS ON YOUTUBE, THIS IS NOT FEASIBLE.

Consider a hash function h: U — [0, 1]

For distinct values in 9 , the h(%i}:—O-“\'i
function maps to iid (independent and h(\l}z Q.\4
identically distributed) Unif(0,1)

random numbers. n “"\\’- 039

W) = 0.6t

Note that, if you were to feed in two
equivalent elements, the function
returns the same number.
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If Yy, .., Y, areiid Unif(0,1), where do we "expect” the points to end up?
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