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[IKELTHOOD (INTUTTION)

I give you and yg assmates each 5 minutes with a coin with unknown
probability o Whoever has the closest estimate will get an

A+ in the class. What do you do in your precious 5 minutes, and what do
you give as your estimate?
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[KELTHOOD (INTUTTION)

I give you and your classmates each 5 minutes with a coin with unknown
probability of heads p. Whoever has the closest estimate will get an

A+ in the class. What do you do in your precious 5 minutes, and what do
you give as your estimate?
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th it as many times as possible, and return # H/ (# H + # T)! ‘
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LIKELTHOOD. (INTUTTION)

Let's say you saw 4 heads
and 1 tail. You tell me p = %.30-?

How can you argue, objectively,
that this is the "best” estimate?

Is there some objective
function it maximizes?
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[KELTHOOD (INTUTTION)

You assume a model (Bernoulli in our case) with unknown parameter 6,
and receive iid samples x = (x4, ..., x,)~Ber(6). The likelihood of the

data given a parameter 6 is %= W w =W
L(x|0) = P(seeing data | 6) NETHTETS, o
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[KELTHOOD (INTUTTION)

You assume a model (Bernoulli in our case) with unknown parameter 6,
and receive iid samples x = (x4, ..., x,)~Ber(0). The likelihood of the
data given a parameter 0 is

L(x|0) = P(seeing data | 8)
= PlXs; v 6
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MAXMUM LIKELTAOOD ESTIMATION (BERNOULLI) ,/(Q)
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MAKIMUM LIKELTHOOD ESTIMATION (POISSON ) *

Let's say x4, X, ..., X, are iid samples from Poi(8). (might look like x; = 3,x, = 5,x; = 4,
etc.) What is the MLE of 6? ey =
Q‘\WN“ °
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Let's say x4, X, ..., x, are iid samples from Poi(8). (might look like x; = 3,x, = 5.x3 = 4
etc.) What is the MLE of 6? w
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0PTIMIZING FUNCTION VS LOG(FUNCTION)
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Since g(x) = log x is strictly increasing, it preserves order, and in particular, the argmax.




MAXIMUM LIKELTHOOD ESTIMATION (POISSON)

Let's say x4, x5, ..., X, are iid samples from Poi(6). (might look like x; = 3,x, = 5,x; = 4,
etc.) What is 'rhe MLE of 6?
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MAXIMUM LIKELTHOOD ESTIMATION (POISSON)

Let's say x4, x5, ..., X, are iid samples from Poi(6). (might look like x; = 3,x, = 5,x; = 4,
etc.) What is the MLE of 6?

n % o
log(ab) = log(a) + log (b) L(x16) = npx(x“ 6) = l_le—eﬁ
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MAXIMUM LIKELTHOOD ESTIMATION (POISSON)

Let's say x4, x5, ..., X, are iid samples from Poi(6). (might look like x; = 3,x, = 5,x; = 4,
etc.) What is the MLE of 6?
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MAXIMUM LIKELTHOOD ESTIMATION (POISSON)

Let's say x4, x5, ..., X, are iid samples from Poi(6). (might look like x; = 3,x, = 5,x; = 4,
etc.) What is the MLE of 6?
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LIKELTHOOD

Realization/Sample: A realization/sample x of a random variable X is the value that is
actually observed.
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Realization/Sample: A realization/sample x of a random variable X is the value that is
actually observed.

Likelihood: Let x = (x4, ..., x,) be iid realizations from probability mass function
px(t;0) (if X discrete), or from density fx(t;8) (if X continuous), where 6 is a
parameter (or vector of parameters). We define the likelihood of x as the probability
of seeing the data.




LIKELTHOOD

Realization/Sample: A realization/sample x of a random variable X is the value that is
actually observed.

Likelihood: Let x = (x4, ..., x,) be iid realizations from probability mass function
px(t;0) (if X discrete), or from density fx(t;8) (if X continuous), where 6 is a
parameter (or vector of parameters). We define the likelihood of x as the probability

of seeing the data.
If X is discrete,

Lx16) = | [pxtuis 0)
i=1
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MAXIMUM LTKELTROOD ESTIMATION (MLE)

Maximum Likelihood Estimation (MLE): Let x = (x4, ..., x,) be iid realizations from
probability mass function px(t;8) (if X discrete), or from density fx(t;0) (if X
continuous), where 6 is a parameter (or vector of parameters). We define the
maximum likelihood estimator ), of 6 to be the parameter which maximizes the
likelihood (or equivalently, the log-likelihood).

Byp = arg mgle(x | 8) = arg max InL(x|6)



RANDOM PICTURE




