7.1, 7.2 MAXIMUM LIKELIHOOD ESTIMATION

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- PROBABILITY VS STATISTICS
- IIKELIHOOD
- MAXIMUM LIKELIHOOD ESTIMATION (MLE)
- MLE EXAMPLE (POISSON)
- MLE EXAMPLE (NORMAL)

PROBABILITY VS STATISTICS

$$Ber(p = 0.5)$$

Probability

given model, predict data

PROBABILITY VS STATISTICS

$$Ber(p = 0.5) \Longrightarrow$$

Probability

given model, predict data

Ber(p = ???)

Statistics

given data, predict model

— ТННТНН

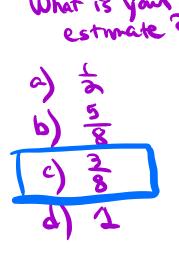
using parametric model of data.

Bin (n,p), Exp (n) Parameter unknown.

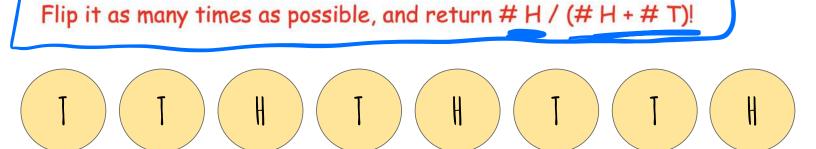
RANDOM PICTURE

I give you and your classmates each 5 minutes with a coin with unknown probability of heads p. Whoever has the closest estimate will get an A+ in the class. What do you do in your precious 5 minutes, and what do you give as your estimate?

TTHTH

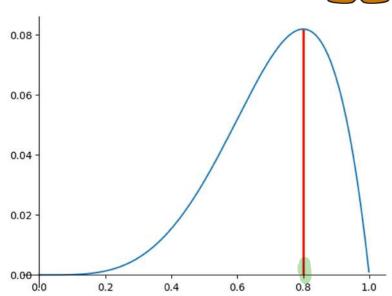


I give you and your classmates each 5 minutes with a coin with unknown probability of heads p. Whoever has the closest estimate will get an A+ in the class. What do you do in your precious 5 minutes, and what do you give as your estimate?



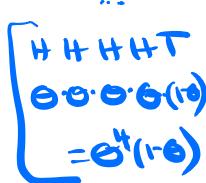
Let's say you saw 4 heads and 1 tail. You tell me $\hat{p} = \frac{4}{5}$. \Rightarrow 0.8 How can you argue, *objectively*, that this is the "best" estimate?

Is there some objective function it maximizes?



You assume a model (Bernoulli in our case) with unknown parameter θ , and receive iid samples $x = (x_1, ..., x_n) \sim Ber(\theta)$. The likelihood of the data given a parameter θ is

$$L(\mathbf{x}|\theta) = P(\text{seeing data} \mid \theta)$$



You assume a model (Bernoulli in our case) with unknown parameter θ , and receive iid samples $x=(x_1,\ldots,x_n){\sim}Ber(\theta)$. The **likelihood** of the data given a parameter θ is

$$L(\mathbf{x}|\theta) = P(\text{seeing data} \mid \theta)$$

= $P(x_1, ..., x_n \mid \theta)$

You assume a model (Bernoulli in our case) with unknown parameter θ , and receive iid samples $x=(x_1,\ldots,x_n){\sim}Ber(\theta)$. The **likelihood** of the data given a parameter θ is

$$L(x|\theta) = P(\text{seeing data} \mid \theta)$$

$$= P(x_1, ..., x_n \mid \theta)$$

$$= \prod_{i=1}^{n} p_X(x_i; \theta)$$

$$P_X(H; \theta) = P(\text{Seeing data} \mid \theta)$$

MAXIMUM LIKELIHOOD ESTIMATION (BERNOULLI)

$$L(HHHHT | \theta) = \theta^{4}(1-\theta) = \theta^{4} - \theta^{5}$$
find param (hat nonimizes L(HHHHT)(s)
$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{3} - 5\theta^{4}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[\theta^{4} - \theta^{5} \right] = 4\theta^{4} - \theta^{5}$$

$$\frac{d}{d\theta} \left[$$

MAXIMUM LIKELIHOOD ESTIMATION (BERNOULLI)

$$L(HHHHT | \theta) = \theta^{4}(1 - \theta) = \theta^{4} - \theta^{5}$$

$$\frac{\partial}{\partial \theta} L(x|\theta) = 4\theta^{3} - 5\theta^{4} = \theta^{3}(4 - 5\theta)$$

$$\hat{\theta}^{3}(4 - 5\hat{\theta}) = 0 \rightarrow \hat{\theta} = \frac{4}{5} \text{ or } 0$$

Probability. Ben(0) Likelihood P(x (e) = prob devent x
given model But(e)
as fn d x (for fixed e) L(x;6) as fin d @
(fixed x) ZPr(x;0) =1 ZL(x,&) anything. L(HHHT | 0.6) > L(HHHT | 0=0.5) Finds parameters & helihad Xxxxx iid. Ber(\$)

Ber(O) Rub (soung doctor parame) WOY. e function go L (X1-1 Xn (8) assuming the parem of distuise not and bup

iid Poisson (O)

Samples

MAXIMUM LIKELIHOOD ESTIMATION (POISSON)



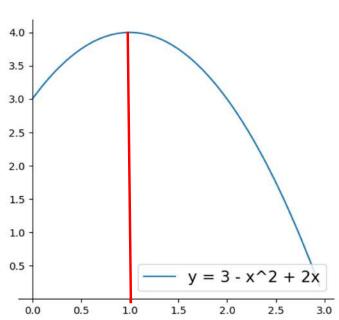
Let's say $x_1, x_2, ..., x_n$ are iid samples from $Poi(\theta)$. (might look like $x_1 = 3, x_2 = 5, x_3 = 4$ etc.) What is the MLE of θ ?

$$L(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} p_{X}(x_{i}; \theta) = \prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_{i}}}{x_{i}!}$$

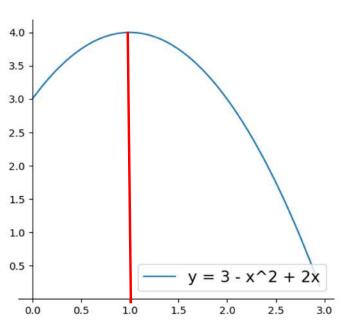
as for a pocameter

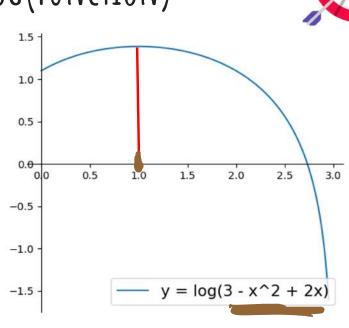
Find & that maximizes L(x/8)

OPTIMIZING FUNCTION VS LOG(FUNCTION)



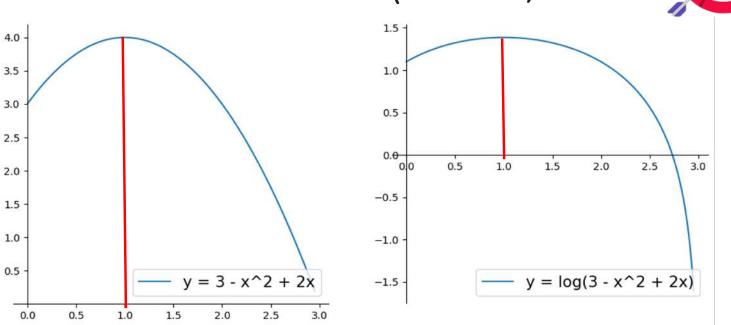
OPTIMIZING FUNCTION VS LOG(FUNCTION)





 $f(x) > f(x_2)$ In $f(x_1) > Inf(x_2)$ * that man in f(x)OPTIMIZING FUNCTION VS LOG(FUNCTION)

1.5



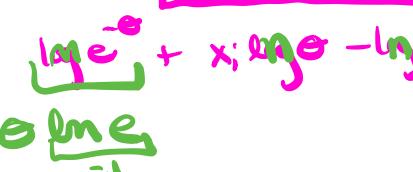
Since $g(x) = \log x$ is strictly increasing, it preserves order, and in particular, the argmax.

Let's say $x_1, x_2, ..., x_n$ are iid samples from $Poi(\theta)$. (might look like $x_1 = 3, x_2 = 5, x_3 = 4$,

etc.) What is the MLE of θ ?

$$\frac{\log(ab) = \log(a) + \log(b)}{\log(a/b) = \log(a) - \log(b)} L(x \mid \theta) = \prod_{i=1}^{b} p_X(x_i; \theta) = \log(a/b) = \log(a) - \log(b)$$

LL(xex ly L(xe)



$$LL(x|a) = \sum_{i=1}^{\infty} [-0 + x_i] \ln a - \ln(x_i)$$

Let's say $x_1, x_2, ..., x_n$ are iid samples from $Poi(\theta)$. (might look like $x_1 = 3, x_2 = 5, x_3 = 4$, etc.) What is the MLE of θ ?

$$\log(ab) = \log(a) + \log(b) \quad L(x \mid \theta) = \prod_{i=1}^{n} p_X(x_i; \theta) = \prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_i}}{x_i!}$$

$$\log(a/b) = \log(a) - \log(b)$$

$$\log(a^b) = b \log a$$

$$\ln L(\mathbf{x} \mid \theta) = \sum_{i=1}^{\infty} [-\theta + x_i \ln \theta - \ln(x_i!)]$$

$$\frac{\sum x_i}{8} = n = \frac{1}{2} = \frac{1}{2} \times \frac{1}{2$$

Let's say $x_1, x_2, ..., x_n$ are iid samples from $Poi(\theta)$. (might look like $x_1 = 3, x_2 = 5, x_3 = 4$, etc.) What is the MLE of θ ?

$$L(x \mid \theta) = \prod_{i=1}^{n} p_X(x_i; \theta) = \prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_i}}{x_i!}$$

$$\ln L(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{i=1}^{n} [-\boldsymbol{\theta} + x_i \ln \boldsymbol{\theta} - \ln(x_i!)]$$

$$L(x \mid \theta) = \sum_{i=0}^{\infty} [-\theta + x_i \ln \theta - \ln(x_i!)]$$

$$\frac{\partial}{\partial \theta} \ln L(x \mid \theta) = \sum_{i=1}^{n} \left[-1 + \frac{x_i}{\theta} \right]$$

$$\sum_{i=1}^{n} \left[-1 + \frac{x_i}{\widehat{\theta}} \right] = 0 \to -n + \frac{1}{\widehat{\theta}} \sum_{i=1}^{n} x_i = 0 \to \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let's say $x_1, x_2, ..., x_n$ are iid samples from $Poi(\theta)$. (might look like $x_1 = 3, x_2 = 5, x_3 = 4$, etc.) What is the MLE of θ ?

$$L(x \mid \theta) = \prod_{i=1}^{n} p_X(x_i; \theta) = \prod_{i=1}^{n} e^{-\theta} \frac{\theta^{x_i}}{x_i!}$$

$$\ln L(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{i=1}^{n} [-\boldsymbol{\theta} + x_i \ln \boldsymbol{\theta} - \ln(x_i!)]$$

$$\frac{\partial}{\partial \theta} \ln L(\mathbf{x} \mid \theta) = \sum_{i=1}^{n} \left[-1 + \frac{x_i}{\theta} \right]$$

$$\sum_{i=1}^{n} \left[-1 + \frac{x_i}{\hat{\theta}} \right] = 0 \to -n + \frac{1}{\hat{\theta}} \sum_{i=1}^{n} x_i = 0 \to \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\frac{\partial^2}{\partial \theta^2} \ln L(\mathbf{x} \mid \theta) = \sum_{i=1}^{n} \left[-\frac{x_i}{\theta^2} \right] < 0 \to \text{concave down everywhere}$$

$$L(x \mid \theta) = \sum_{i=1}^{\infty} \left[-\frac{x_i}{\theta^2} \right] < 0 \rightarrow \text{concave down everywher}$$

Given indep samples xi, xn General from parametric model Find & that (x, xn/a) -> Poisson(B) $= \prod_{i=1}^{n} b^{i}(x;i,a) \in$ dismit cont. $\stackrel{\triangle}{=}$ $\stackrel{\triangle}{=}$ (a) we will tent 10 1 while $= \sum_{i=1}^{n} en \left[P_X(x_i; \sigma) \right]$ = \frac{2}{2} lm [fx(x:;\e)]

Find & multiple parales 1 boronges distr has solve for 8 verify solv is nox (2"duiv) -re definite

LIKELIHOOD

<u>Realization/Sample:</u> A realization/sample x of a random variable X is the value that is actually observed.

LIKELIHOOD

Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

<u>Likelihood</u>: Let $x = (x_1, ..., x_n)$ be iid realizations from probability mass function $p_X(t;\theta)$ (if X discrete), or from density $f_X(t;\theta)$ (if X continuous), where θ is a parameter (or vector of parameters). We define the likelihood of x as the probability of seeing the data.

LIKELIHOOD

<u>Realization/Sample</u>: A realization/sample x of a random variable X is the value that is actually observed.

<u>Likelihood</u>: Let $x=(x_1,...,x_n)$ be iid realizations from probability mass function $p_X(t;\theta)$ (if X discrete), or from density $f_X(t;\theta)$ (if X continuous), where θ is a parameter (or vector of parameters). We define the likelihood of X as the probability of seeing the data.

If X is discrete,

$$L(x \mid \theta) = \prod_{i=1}^{n} p_X(x_i; \theta)$$

$$L(\hat{x}|e) = \prod_{i \in I} f_{X}(x; e)$$

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

<u>Maximum Likelihood Estimation (MLE)</u>: Let $x = (x_1, ..., x_n)$ be iid realizations from probability mass function $p_X(t;\theta)$ (if X discrete), or from density $f_X(t;\theta)$ (if X continuous), where θ is a parameter (or vector of parameters). We define the maximum likelihood estimator $\hat{\theta}_{MLE}$ of θ to be the parameter which maximizes the likelihood (or equivalently, the log-likelihood).

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(x \mid \theta) = \arg \max_{\theta} \ln L(x \mid \theta)$$

RANDOM PICTURE

