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PROBLEM

e Input: sequence of I elements X1, X2, s Xy from a known
universe U (e.g., 8-byte 1integers).

® Goal: perform a computation on the 1input, in a single
left to right pass where

0 Elements processed in real time

0 Can’t store the full data. => minimal storage requirement to maintain
working “summary?”



HEAVY HITTERS: KEYS THAT OCCUR MANY TIMES
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Applications:
® Determining popular products

® Computing frequent search queries
® Identifying heavy TCP
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COUNT-MIN SKETCH

® Maintain a short summary of the information that still
enables answering queries.

® Cousin of the Bloom filter

0 Bloom Filter solves the “membership problem”.

O We want to extend it to solve a counting problem.
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COUNT-MIN SKETCH

® FElegant small space data structure.
® Space used is independent of n.

® Is implemented in several real systems.
O AT&T used in network switches to analyze network traffic.

O Google uses a version on top of Map Reduce parallel processing
infrastructure and in log analysis.

® Huge literature on sketching and streaming algorithms
(algorithms 1like Distinct Elements, Heavy Hitters and
many many other very cool algorithms).
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AGENDA

o MARKDY'S INEQUALITY
o CHEBVSHEV'S INFQUALITY
o THE LA OF LARGE NUMBERS
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MARKOVS INEQUALLTY (INTUITION) 6=

The score distribution of an exam is modelled by a rv X with range Qx < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?
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MARKOV'S INEQUALLTY (INTUITION) 52

The score distribution of an exam is modelled by a rv X with range Qx < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?

1
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MARKOV'S INEQUALLTY (INTULTION) :

The score distribution of an exam is modelled by a rv X with range Qx < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?

l
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If the average was E[X] = 25, at most what percentage of the class could have gotten
100 (or higher)? <
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MARKOY"S INEQUALLTY (INTUITION) 0=

The score distribution of an exam is modelled by a rv X with range Qx < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?

1

2

If the average was E[X] = 25, at most what percentage of the class could have gotten

100 (or higher)? <
1 -
3 a\ 0%,

. . >
What if you could get a negative score: b) 50° /0
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MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or
continuous), and let k > 0. Then,

pors < B



MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or
continuous), and let k > 0. Then,

pors < B

Alternatively,

P(X = kE[X]) < %






MARKOY'S INEQUALLTY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<£

Proof (Markov):

0 k (%)
X > 0%‘[ ofx@dx = [ xfxCodx+ [ xfyGax
\ 0 0 k

Rearranging gives

> fooxfx(x)dx > fookfx(x)dx = kfoofx(x)dx =kP(X = k)
k K K

P(XZk)s%X]-



CHEBYSHEV"S INEQUALLTY

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let a > 0.

Var(X)

P(IX—ul=a) < "




CHEBYSHEV"S INEQUALLTY

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let a > 0.

Var(X)

P(IX—ul=a) < "

Alternatively, if k > 0,

1
P(|X — u| = ko) Sﬁ



CHEBYSHEV"S INEQUALLTY (PICTURE FOR GAUSSIAN)

Chebyshev's Inequality: Let X be any random variable, with mean p = E[X]
and (finite) variance. Let k > 0.

1
P(X —ul 2 ko) <35




CHEBYSHEV"S INEQUALLTY (PICTURE FOR GAUSSIAN)

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let k > 0.

1
P(|X — ul = ko) Sﬁ
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CHEBYSHEV'S INEQUALITY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<£

3

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let a > 0.

Var(X)

PUX —plz @) < —




CHEBYSHEV'S INEQUALITY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<£

3

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let a > 0.

Var(X)
az

P(X —pulza) <

Proof (Chebyshev): (X — u)? is a nonnegative random variable.




CHEBYSHEV'S INEQUALITY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<£

Chebyshev's Inequality: Let X be any random variable, with mean u = E[X]
and (finite) variance. Let a > 0.

Var(X)

PUX —plz @) < —

Proof (Chebyshev): (X — u)? is a nonnegative random variable.
P(X—pulZ2 a) = P((X — p)? 2 a?)

< E[(Xa K] [Markov]

Var(X)




THE LAW OF LARGE NUMBERS

Weak Law of Large Numbers (WLLN): Let X;, X;, ... X,, be a sequence of iid random
variables with mean u. Let X, = %Z?ﬂXi be the sample mean. Then, X,, converges in
probability to u. That is, for any € > 0,

lim P(| X, —u|>€)=0
n—oco




PROOF OF THE WLLN 1%3

Weak Law of Large Numbers (WLLN): Let X;, X, ... X,, be a sequence of iid random
variables with mean p. Let X, = 3™, X; be the sample mean. Then, X,, converges in

n

probability to u. That is, for any € > 0,

lim P(|X, —u| >€) =0
n—00

Proof: Recall E[X,] = u and Var(X,) = ¢?/n.



PROOF OF THE WLLN ig/ 3

Weak Law of Large Numbers (WLLN) Let Xy, X,, ... X,, be a sequence of iid random
variables with mean p. Let X, ™ . X; be the sample mean. Then, X,, converges in
probability to u. That is, for any €>0,

7lli_r£1°P(l)?n —ul>e)=0
Proof: Recall E[X,] = u and Var(X,) = %/n. By Chebyshev's inequality,

P(IX,—ul>e€) <

v 2
Var(zXn) _o i Cason = o)

ne?






