HEAVY HITTERS (continued) TAIL BOUNDS

ANNA KARLIN

PROBLEM

- Input: sequence of n elements $x_1, x_2, ..., x_n$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can't store the full data. => minimal storage requirement to maintain working "summary"

HEAVY HITTERS: KEYS THAT OCCUR MANY TIMES 32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4,

Applications:

- Determining popular products
- Computing frequent search queries
- Identifying heavy TCP

V ten fx: #times element x has appeared in x, xa, , xt

Goal: Find/output all elements with
$$f_x > K$$

(These elts are "heavy hitters")

Output has size O(k) Provably impossible to solve this peblem anactly who sublinear space

Modified good: (solve E-HH problem)
() If
$$f_x \ge \frac{n}{k}$$
, x added to HH list
(a) If some elt, say y, added
to hest, then up. $\ge 1 - 6$
 $f_y \ge \frac{n}{k} - \varepsilon n$

•

•

COUNT-MIN SKETCH

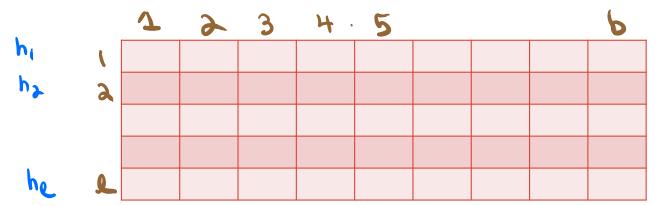
- Maintain a short summary of the information that still enables answering queries.
- Cousin of the Bloom filter
 - $\circ~$ Bloom Filter solves the "membership problem".
 - $\circ~$ We want to extend it to solve a counting problem.

COUNT-MIN SKETCH

Modified good: (solve E-HH publicen)
() If
$$f_x \ge \frac{n}{k}$$
, x added to HH list
(a) If some elt, say y, added
to hist, then up. $\ge 1-6$
 $f_y \ge \frac{n}{k} - \varepsilon n$

initialize tables with all Os

when elt x shows up. Updake (x): $\forall 1 = j \leq l$ increment $(\pm j [h_j(x)])$ (wont (x): return min $\pm j [h_j(x)]$ if (ount(x) $\geq n_{k}$, add x to HH list



Assumptions

(1) hash functions behave like rendom maps h,,...he : U → {0,1,.., b-1} $\forall x \neq y \quad Pr(h; (x) = h; (y)) = t$

Initialize tables with all Os
when
$$dt \ge shows up$$
.
Update (x): $\forall \ (=j=l \ increment \ (\pm j \ (h \ (x)) \ (x): return \ \min_{\substack{i=j=l}} \ (j \ (h \ (x)) \ (x): return \ (i \ (x) \ (x): return \ (x): x \ (x) \$

 \mathbf{N}

Fix time to (x_{i}, x_{i}) have just arrived) $Z_{j}^{t} \stackrel{\text{def}}{=} t_{j} [h_{j}(x)]$

COUNT-MIN SKETCH

- Elegant small space data structure.
- Space used is independent of n.
- Is implemented in several real systems.
 - $\circ~$ AT&T used in network switches to analyze network traffic.
 - Google uses a version on top of Map Reduce parallel processing infrastructure and in log analysis.
- Huge literature on sketching and streaming algorithms (algorithms like Distinct Elements, Heavy Hitters and many many other very cool algorithms).

6.1 TAIL BOUNDS

MOST SLIDES BY JOSHUA FAN AND ALEX TSUN

Agenda

- MARKOV'S INEQUALITY
- CHEBYSHEV'S INEQUALITY
- THE LAW OF LARGE NUMBERS

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

a) 100%
b) 50%
c) 25%
d) no bound

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

 $\frac{1}{2}$

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

 $\frac{1}{2}$

If the average was E[X] = 25, at most what percentage of the class could have gotten 100 (or higher)?

a) 100% b) 50% c) 25% d) no bound

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

 $\frac{1}{2}$ If the average was E[X] = 25, at most what percentage of the class could have gotten100 (or higher)? $\frac{1}{4}$ What if you could get a negative score?b) 50%c) 25%d) no bound

MARKOV'S INEQUALITY

<u>Markov's Inequality</u>: Let $X \ge 0$ be a nonnegative random variable (discrete or continuous), and let k > 0. Then,

$$P(X \ge k) \le \frac{E[X]}{k}$$

MARKOV'S INEQUALITY

<u>Markov's Inequality</u>: Let $X \ge 0$ be a nonnegative random variable (discrete or continuous), and let k > 0. Then,

$$P(X \ge k) \le \frac{E[X]}{k}$$

Alternatively,

$$P(X \ge kE[X]) \le \frac{1}{k}$$

 $P(X \ge k) \le \frac{E[X]}{k}$

Proof (Markov):

$$X \ge 0 \qquad E[X] = \int_0^\infty x f_X(x) dx = \int_0^k x f_X(x) dx + \int_k^\infty x f_X(x) dx$$
$$\ge \int_k^\infty x f_X(x) dx \ge \int_k^\infty k f_X(x) dx = k \int_k^\infty f_X(x) dx = k P(X \ge k)$$

Rearranging gives

$$P(X \ge k) \le \frac{E[X]}{k}$$

CHEBYSHEV'S INEQUALITY

<u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let $\alpha > 0$.

$$P(|X - \mu| \ge \alpha) \le \frac{Var(X)}{\alpha^2}$$

CHEBYSHEV'S INEQUALITY

<u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let $\alpha > 0$.

$$P(|X - \mu| \ge \alpha) \le \frac{Var(X)}{\alpha^2}$$

Alternatively, if k > 0,

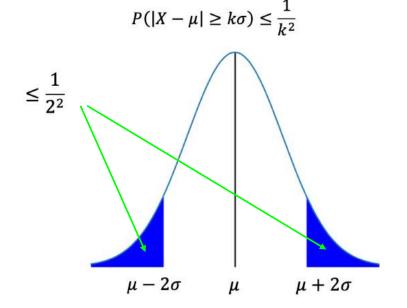
$$P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}$$

CHEBYSHEV'S INEQUALITY (PICTURE FOR GAUSSIAN) <u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let k > 0. $P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}$

 $\mu - 2\sigma$

 $\mu \mu + 2\sigma$

CHEBYSHEV'S INEQUALITY (PICTURE FOR GAUSSIAN) <u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let k > 0.



$\begin{array}{l} \left(\text{HEBYSHEV'S INEQUALITY} \left(PROOF \right) \\ \underline{\text{Markov's Inequality:}} \text{ Let } X \geq 0 \text{ be a nonnegative } rv \text{ and } \text{let } k > 0. \text{ Then,} \\ P(X \geq k) \leq \frac{E[X]}{k} \end{array} \right)$

<u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let $\alpha > 0$.

$$P(|X - \mu| \ge \alpha) \le \frac{Var(X)}{\alpha^2}$$

$\begin{array}{l} \left(\text{HEBYSHEV'S INEQUALITY} \left(PROOF \right) \\ \underline{\text{Markov's Inequality:}} \text{ Let } X \geq 0 \text{ be a nonnegative rv and let } k > 0. \text{ Then,} \\ P(X \geq k) \leq \frac{E[X]}{k} \end{array}$

<u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let $\alpha > 0$.

$$P(|X-\mu| \ge \alpha) \le \frac{Var(X)}{\alpha^2}$$

<u>Proof</u> (Chebyshev): $(X - \mu)^2$ is a nonnegative random variable.

$\begin{array}{l} \left(\text{HEBYSHEV'S INEQUALITY} \left(PROOF \right) \\ \underline{\text{Markov's Inequality:}} \text{ Let } X \geq 0 \text{ be a nonnegative rv and let } k > 0. \text{ Then,} \\ P(X \geq k) \leq \frac{E[X]}{k} \end{array}$

<u>Chebyshev's Inequality</u>: Let X be any random variable, with mean $\mu = E[X]$ and (finite) variance. Let $\alpha > 0$.

$$P(|X - \mu| \ge \alpha) \le \frac{Var(X)}{\alpha^2}$$

<u>Proof</u> (Chebyshev): $(X - \mu)^2$ is a nonnegative random variable.

$$P(|X - \mu| \ge \alpha) = P((X - \mu)^2 \ge \alpha^2)$$
$$\le \frac{E[(X - \mu)^2]}{\alpha^2} \text{ [Markov]}$$
$$= \frac{Var(X)}{\alpha^2}$$

THE LAW OF LARGE NUMBERS

··· ·· ·· ·· ··

<u>Weak Law of Large Numbers (WLLN)</u>: Let $X_1, X_2, ..., X_n$ be a sequence of iid random variables with mean μ . Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Then, \overline{X}_n converges in probability to μ . That is, for any $\epsilon > 0$,

 $\lim_{n\to\infty} P(|\bar{X}_n-\mu|>\epsilon)=0$

PROOF OF THE WLLN

<u>Weak Law of Large Numbers (WLLN)</u>: Let $X_1, X_2, ..., X_n$ be a sequence of iid random variables with mean μ . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Then, \bar{X}_n converges in probability to μ . That is, for any $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|>\epsilon)=0$$

<u>**Proof**</u>: Recall $E[\bar{X}_n] = \mu$ and $Var(\bar{X}_n) = \sigma^2/n$.

PROOF OF THE WLLN

<u>Weak Law of Large Numbers (WLLN)</u>: Let $X_1, X_2, ..., X_n$ be a sequence of iid random variables with mean μ . Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Then, \bar{X}_n converges in probability to μ . That is, for any $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n-\mu|>\epsilon)=0$$

<u>Proof</u>: Recall $E[\bar{X}_n] = \mu$ and $Var(\bar{X}_n) = \sigma^2/n$. By Chebyshev's inequality,

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ (as } n \to \infty)$$

