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PROBLEM

e Input: sequence of I elements X1, X2, s Xy from a known
universe U (e.g., 8-byte 1integers).

® Goal: perform a computation on the 1input, in a single
left to right pass where

O Elements processed in real time

0 Can’t store the full data. => minimal storage requirement to maintain
working “summary?”
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Applications: Ya ...
® Determining popular products ") ™

® Computing frequent search queries
® Identifying heavy TCP
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COUNT-MIN SKETCH

® Maintain a short summary of the information that still
enables answering queries.

® Cousin of the Bloom filter

0 Bloom Filter solves the “membership problem”.

O We want to extend it to solve a counting problem.
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COUNT-MIN SKETCH

® Elegant small space data structure.
S ozt v

® Space used is independent of n.

® Is implemented in several real systems.

O AT&T used in network switches to analyze network traffic.

(@]

Google uses a version on top of Map Reduce parallel processing
infrastructure and in log analysis.

® Huge literature on sketching and streaming algorithms
(algorithms 1like Distinct Elements, Heavy Hitters and
many many other very cool algorithms).
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o MARKDY'S INEQUALITY
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MARKOV'S INEQUALLTY (INTULTION)

The score distribution of an exam is modelled by a rv X with range Qx < [0, 110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten

100 (or higher)? — S—
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MARKOV'S INEQUALLTY (INTUITION) &

The score distribution of an exam is modelled by a rv X with range Qyx < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?
1

7.

If the average was E[X] = 25, at most what percentage of the class could have gotten
100 (or higher)? <.
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MARKOV'S INEQUALLTY (INTUITION) E

The score distribution of an exam is modelled by a rv X with range Qy < [0,110] (for
extra credit). N " ol fo =\\O

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?

1

2
If the average was E[X] = 25, at most what percentage of the class could have gotten
100 (or higher)? =
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MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or

continuous), and let k > 0. Then, Ilcw\d A uppr kel
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MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or

continuous), and let k > 0. Then,
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MARKOY'S INEQUALLTY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<L

Proof (Markov):
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Rearranging gives
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