

PROBLEM

- Input: sequence of n elements $x_1, x_2, ..., x_n$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can't store the full data. => minimal storage requirement to maintain working "summary"

HEAVY HITTERS: KEYS THAT OCCUR MANY TIMES

$$x_1$$
, x_2 , 12 , 14 , 32 , 7 , 12 , 32 , 7 , 32 , 12 , 4 ,
 $f_{33}^{+}=3$
Applications:
• Determining popular products
• Determining frequent search queries
• Identifying heavy TCP
 V ten f_{x}^{+} : # three element x has
appeared in $x_1 x_{2n}$, x_{2}
 $f_{x}^{+}=0.01$ n
 $f_{$

Output has see
$$O(k_{-})$$

Provely impossible to solve this problem inactly with sublinear space
Madified good: (volve E -HH publice)
 O If $f_{x} \ge \frac{n}{k}$, x outled to HH list
 O If $f_{x} \ge \frac{n}{k}$, x outled to HH list
 O If some alt, soury y, added
to hust, then we $\ge 1 - C$
 $f_{y} \ge \frac{n}{k} - \sum n$.
Example:
 $k = 20$ $k = 20 = 0.05n$
 $E = 0.01$
 $f_{y} \ge 0.05n - 0.01n = 0.04n$

COUNT-MIN SKETCH

- Maintain a short summary of the information that still enables answering queries.
- Cousin of the Bloom filter
 - $\circ~$ Bloom Filter solves the "membership problem".
 - $\circ~$ We want to extend it to solve a counting problem.

COUNT-MIN SKETCH

Modified good: (solve E-HH problem)
() If
$$f_x \ge \frac{n}{k}$$
, x added to HH list
(a) If some elt, say y, added
to hest, then up. $\ge 1 - 6$
 $f_y \ge \frac{n}{k} - \varepsilon n$

designer specifies
$$k_1 \in S = b_1 R$$

Assumptions
(1) hash functions behave like random maps

$$h_{1,...,h_{2}} : U \longrightarrow \{0,1,...,b-1\}$$

 $\forall x \neq y \ Pr(h;(x) = h;(y)) = \frac{1}{5}$
(2) hash from $h_{1...,h_{2}}$
are indep of each other.

Fix time tj X1, Xa, -y X+ have just arrived $Z_{j}^{t} \stackrel{\text{\tiny def}}{=} +_{j} [h_{j}(x)]$ + Zf Wxy ť. $E(z_j^t) = f_x^t + Z_{dishut y \neq x}$ E (Wxy) $W_{xy} = \begin{cases} h_j(x) = h_j(y) \\ 0 & \text{otometh} \end{cases}$ $= f_{+}^{x} + p$ at 5 fx+ 3 $E(2_{3}^{+})-f_{x}^{+} \leq \frac{2}{6}$

Pr(2; -fx >2+)= Let X = Z' -fx Inequality, By Zit is ownestimate of fx if X20 Pr(2+-f* > 2E(x)) = 1 $Pr(X > aE(x)) \leq \frac{1}{2}$ $Pr(2; + -f_{x} + 2n) = Pr(2; + -f_{x} + 2ae(x)) = \frac{1}{2}$ ¥', ¥t≤n Putting it all together E(X)= **XE(X** Pr (count (x) - fx" > an $= \Pr(m(z_1, z_2)) - f_{x_1} \ge \frac{2n}{b}$ = Pr(zi-f,">== Zj-f,">==::2e-fx 5 Pr(lount(x) -fx independence) for different tables

K, EF. Modified good: (solve ε -HH publican) If $f_x \ge \frac{\eta}{k}$, x added to HH list x = 3x X added to HH list added some elt, say y (d) II S= je to lust, then wp. > ッえ HA トート l=109.(= Pr(Count(x) - fx Prob (ount(x) unde up in P colorad to list, **H**# (antig) 》文 -En

3

COUNT-MIN SKETCH

• Elegant small space data structure.

- Space used is independent of n.
- Is implemented in several real systems.
 - AT&T used in network switches to analyze network traffic.
 - Google uses a version on top of Map Reduce parallel processing infrastructure and in log analysis.
- Huge literature on sketching and streaming algorithms (algorithms like Distinct Elements, Heavy Hitters and many many other very cool algorithms).

Hash functions Say hashing n 32 bit integers into table
Pick prime number
$$p > min(n, 3^{3n})$$
 (size b)
 $H = \{h(x) = [(ex+g) \mod p] \mod p\}$ and $h = 1 \le e \le p - 1$
 $f \le 0_{1-1}b^{-1}$
formily g hash fins: $(p-1) \cdot p$ # g fins in formily.
If his chosen uniformly at random free X
 $\forall x \ne y$ $Pr(h(x) = h(y)) \le 3$.

6.1 TAIL BOUNDS

MOST SLIDES BY JOSHUA FAN AND ALEX TSUN

AGENDA

MARKOV'S INEQUALITY
CHEBYSHEV'S INEQUALITY
THE LAW OF LARGE NUMBERS

MARKOV'S INEQUALITY (INTUITION)

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

at most 50% g class
control hour gottom score
g 100 or highen.
Pf by
$$\rightarrow \in$$

suppose > 50% got score >100
 $E(X) = \sum_{x \in 0} score Pr(X=score) > 50$ d) no bound
 $E(X) = \sum_{x \in 0} score Pr(X=score) > 50$ d) no bound

MARKOV'S INEQUALITY (INTUITION)

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

 $\frac{1}{2}$

If the average was E[X] = 25, at most what percentage of the class could have gotten 100 (or higher)?

MARKOV'S INEQUALITY

Markov's Inequality: Let $X \ge 0$ be a **nonnegative** random variable (discrete or bound on upper tail continuous), and let k > 0. Then, $P(X \ge k) \le \frac{E[X]}{k}$ $E(X) = \sum_{\substack{X \in \mathcal{X} \\ x \in \mathcal{I}_X}} \Pr(X=x) + \sum_{\substack{X \in \mathcal{I}_X \\ x \in \mathcal{I}_X}} \Pr(X=x) + \sum_{\substack{X \in \mathcal{I}_X \\ x \in \mathcal{I}_X}} \Pr(X=x)$ 20 > KZPr(X=x)=kPr(X>k)

$$E(X) \ge k Pr(X \ge k)$$

$$\equiv Pr(X \ge k) \le E(X)$$

MARKOV'S INEQUALITY

<u>Markov's Inequality</u>: Let $X \ge 0$ be a nonnegative random variable (discrete or continuous), and let k > 0. Then,

Proof (Markov):

$$X \ge 0 \qquad E[X] = \int_0^\infty x f_X(x) dx = \int_0^k x f_X(x) dx + \int_k^\infty x f_X(x) dx$$
$$\ge \int_k^\infty x f_X(x) dx \ge \int_k^\infty k f_X(x) dx = k \int_k^\infty f_X(x) dx = k P(X \ge k)$$

Rearranging gives

$$P(X \ge k) \le \frac{E[X]}{k}$$

