Problem

- Input: sequence of n elements x_1, x_2, \ldots, x_n from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can’t store the full data. \Rightarrow minimal storage requirement to maintain working “summary”
Heavy Hitters: Keys that occur many times

\[x_1, x_2, x_3, \ldots, x_n \]

Applications:
- Determining popular products
- Computing frequent search queries
- Identifying heavy TCP

Goal: Find/output all elements \(x \) with \(f_x^+ \geq \frac{n}{k} \) (These are "heavy hitters")

\[f_{x_1}^+ = 6, f_{x_2}^+ = 3 \]

\[x_1, x_2, \ldots, x_n \]

\[k = 100, \quad f_{x_i} \geq 0.01n \]

\[\leq 100 \text{ such elements} \]
Output has size $O(k)$

Provably impossible to solve this problem exactly with sublinear space

Modified goal: (solve ϵ-HHT problem)

1. If $f_x^n \geq \frac{n}{k}$, x added to HHT list

2. If some elt, say y, added to list, then w.p. $\geq 1-\delta$

 \[
 f_y^n \geq \frac{n}{k} - \epsilon \cdot n
 \]

Example:

$k = 20, \quad \frac{2}{k} = \frac{20}{20} = 0.05n$

$\epsilon = 0.01$

$\Rightarrow f_y^n \geq 0.05n - 0.01n = 0.04n$

much smaller than n space impossible
Count-min sketch

- Maintain a short summary of the information that still enables answering queries.

- Cousin of the Bloom filter
 - Bloom Filter solves the “membership problem”.
 - We want to extend it to solve a counting problem.
Count-Min Sketch

Modified goal: (solve ε-HH problem)

1. If \(f_x \geq \frac{n}{k} \), \(x \) added to HH list
2. If some elt, say \(y \), added to list, then w.p. \(\geq 1 - \delta \)
 \[f_y \geq \frac{n}{k} - \epsilon n \]

designer specifies \(k, \epsilon, \delta \) \(\Rightarrow \) \(b, \epsilon \)

Keep \(2D \) away.

2 hash tables, each of size \(b \).
Initialize tables with all 0s when elt x shows up.

Update(x): $\forall 1 \leq j \leq l$, increment $t_j[h_j(x)]$

Count(x): return $\min_{1 \leq j \leq l} t_j[h_j(x)]$

If Count(x) $\geq \frac{n}{k}$, add x to hit list.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example $l=2$

Suppose

$\text{Count}(x)$

Return 3

$\sum_{x \in S} \text{Count}(h_0(x)) = 3$
Initialize tables with all 0s when element x shows up.

Update (x): For $1 \leq j \leq L$, increment $t_j[h_j(x)]$.

Count (x): Return $\min_{1 \leq j \leq L} t_j[h_j(x)]$.

If $\text{Count}(x) \geq \frac{n}{k}$, add x to HHT list.

Observations

\[A_j, A_x, A_t \]

\[t_j[h_j(x)] = f_x \]

\[\Rightarrow \]

\[\text{Count}(x) = \min_{1 \leq j \leq L} t_j[h_j(x)] = f_x \]

Graph

Green shows current Count

For any x, that is output

$\omega_p \geq 1 - \delta$ if $f_y \geq \frac{n}{k} - \varepsilon n$
Assumptions

1. Hash functions behave like random maps
 \[h_1, \ldots, h_b : \{0, 1, \ldots, b-1\} \]
 \[\forall x \neq y \quad \Pr(h_j(x) = h_j(y)) = \frac{1}{b} \]

2. Hash functions are independent of each other.

Initialize tables with all Os

When elt x shows up:

Update \((x)\): \(\forall 1 \leq j \leq b\) increment \(t_j[h_j(x)]\)

Count \((x)\): return \(\min_{1 \leq j \leq b} t_j[h_j(x)]\)

if \(\text{Count}(x) \geq \frac{n}{k}\), add \(x\) to HT list.
Fix time t_j have just arrived

$Z^+_j \equiv t_j \left[h_j(x) \right]$

$$E(Z^+_j) = f^+_x + \sum_{y \neq x} f^+_y E(w_{xy})$$

$$= f^+_x + \sum_{y \neq x} f^+_y \cdot \frac{1}{b}$$

$$= f^+_x + \frac{1}{b} \left[\sum_{y \neq x} f^+_y \right]$$

$$= f^+_x + \frac{1}{b} \left[f^+_x + \frac{n}{b} \right]$$

$$\leq f^+_x + \frac{n}{b}$$

$$E(Z^+_j) - f^+_x \leq \frac{n}{b}$$
Let $X \triangleq z_j^t - f_x^t$ be non-negative. By Markov's Inequality,

$$\Pr(X > 2\mathbb{E}(X)) = \frac{1}{2}$$

for any $X > 0$. Therefore,

$$\Pr(z_j^t - f_x^t > 2\mathbb{E}(X)) = \frac{1}{2}$$

Putting it all together,

$$\Pr(\text{Count}(x) - f_x^a > \frac{2n}{b})$$

is equivalent to

$$\Pr(\min_{j} (z_j^n - f_x^n) - f_x^n > \frac{2n}{b})$$

which can be expressed as

$$\Pr(Z_j^n - f_x^n > \frac{2n}{b}, Z_j^n - f_x^n > \frac{2n}{b}, \ldots, Z_j^n - f_x^n > \frac{2n}{b})$$

for each j. Using independence of hash keys for different tables, we have

$$\prod_{j=1}^n \Pr(Z_j^n - f_x^n > \frac{2n}{b}) = \frac{1}{2} \cdot \frac{1}{2} \cdots = \frac{1}{2^n}$$

Therefore,

$$\Pr(\text{Count}(x) - f_x^a > \frac{2n}{b}) = \frac{1}{2^n}$$
Modified goal: (solve E-H H problem)

1. If \(f_x^n \geq \frac{n}{k} \), \(x \) added to \(H \) list
2. If some elt, say \(y \), added to \(H \) list, then up. \(\geq 1 - \delta \) \(\implies \) \(f_y^n \geq \frac{2^n}{k} - \frac{\epsilon}{n} \)

Pr(\(\text{Count}(x) - f_x^n \geq \frac{2^n}{b} \)) \(\leq \frac{1}{2^c} \)

\(\epsilon x = \frac{2x}{b} \)

\(\Rightarrow \) \(b = \frac{\epsilon x}{3} \)

\(\delta = \frac{1}{2^c} \)

\(\Rightarrow \) \(2^{c} = \frac{1}{\delta} \)

\(\Rightarrow \) \(l = \log_2(\frac{1}{\delta}) \)

Prob \(\text{Count}(x) \) ends up in purple \(\leq \frac{\delta}{n} \)

If \(y \) added to \(H \) list, \(\Rightarrow \)

\(\text{Count}(y) \geq \frac{n}{k} \) \(\Rightarrow \) \(w_p \geq 1 - \frac{\epsilon}{k} \)

\(f_x^n \geq \frac{n}{k} - \frac{\epsilon}{n} \)
Count-Min Sketch

- Elegant small space data structure.
- Space used is independent of n. $O(b \cdot \log k)$
- Is implemented in several real systems.
 - AT&T used in network switches to analyze network traffic.
 - Google uses a version on top of Map Reduce parallel processing infrastructure and in log analysis.
- Huge literature on sketching and streaming algorithms (algorithms like Distinct Elements, Heavy Hitters and many many other very cool algorithms).
Hash functions say hashing n 32-bit integers into table of size b.

Pick prime number $p > \min(n, 2^{32})$.

$$H = \left\{ h_e(x) = \left[(e \cdot x + g) \mod p \right] \mod b \right\} \text{ for } 0 \leq g \leq p-1, 1 \leq e \leq p-1$$

family of hash fn f is $(p-1)$, p # of fn in family.

If h is chosen uniformly at random from H:

$$\forall x \neq y \quad \Pr(h(x) = h(y)) \leq \frac{2}{b}.$$
A different hash function should be selected uniformly at random from \mathcal{H}.
6.1 Tail bounds

Most Slides by Joshua Fan and Alex Tsun
AGENDA

- Markov’s Inequality
- Chebyshev’s Inequality
- The law of large numbers
Markov’s Inequality (intuition)

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was $E[X] = 50$, at most what percentage of the class could have gotten 100 (or higher)?

at most 50% of class could have gotten score 100 or higher.

Proof by:

Suppose $>50\%$ got score ≥ 100

$$E(X) = \sum \frac{\text{score}}{\text{scored} \geq 100} \cdot \frac{\Pr(X=\text{score})}{\geq 50\%} \geq 100 \cdot \frac{1}{2} > 50$$

\[a) \quad 100\% \]
\[b) \quad 50\% \]
\[c) \quad 25\% \]
\[d) \quad \text{no bound} \]
Markov’s Inequality (intuition)

The score distribution of an exam is modelled by a rv X with range $\Omega_x \subseteq [0,110]$ (for extra credit).

If the average was $E[X] = 50$, at most what percentage of the class could have gotten 100 (or higher)?

If the average was $E[X] = 25$, at most what percentage of the class could have gotten 100 (or higher)?

\[
\frac{1}{2}
\]

At most \(\frac{1}{4}\) can get score \(\geq 100\).
Markov’s Inequality (Intuition)

The score distribution of an exam is modeled by a random variable X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was $E[X] = 50$, at most what percentage of the class could have gotten 100 (or higher)?

If the average was $E[X] = 25$, at most what percentage of the class could have gotten 100 (or higher)?

What if you could get a negative score?

Any random variable X with $E(X) = 50$

\[0.01 (-4900) + 0.99 \cdot 100 = 50 \]
Markov’s Inequality

Markov’s Inequality: Let $X \geq 0$ be a nonnegative random variable (discrete or continuous), and let $k > 0$. Then,

$$P(X \geq k) \leq \frac{E[X]}{k}$$

Bound on upper tail

$$E(X) = \sum_{x \in \mathbb{X}} x \cdot \Pr(X = x) + \sum_{x \mid x \geq k} x \cdot \Pr(X = x)$$

$$\geq 0$$

$$\geq \sum_{x \mid x \geq k} x \cdot \Pr(X = x) \geq k \sum_{x \mid x \geq k} \Pr(X = x) = k \Pr(X \geq k)$$
Markov’s Inequality

Markov’s Inequality: Let $X \geq 0$ be a nonnegative random variable (discrete or continuous), and let $k > 0$. Then,

\[E(X) \geq k \Pr(X \geq k) = \Pr(X \geq k) \leq \frac{E(X)}{k} \]

Alternatively,

\[P(X \geq k) \leq \frac{E[X]}{k} \Rightarrow \Pr(X \geq cE(X)) \leq \frac{E(X)}{cE(X)} = \frac{1}{c} \]

For $c > 1$,

\[\Pr(X \geq 2E(X)) \leq \frac{1}{2} \quad \text{for } X \geq 0 \]

\[c = 2 \]

\[\Pr(X \geq 2E(X)) \leq \frac{1}{2} \]
Markov's Inequality (Proof)

Markov's Inequality: Let $X \geq 0$ be a nonnegative rv and let $k > 0$. Then,

$$P(X \geq k) \leq \frac{E[X]}{k}$$

Proof (Markov):

\[
X \geq 0 \quad E[X] = \int_0^\infty x f_X(x) \, dx = \int_0^k x f_X(x) \, dx + \int_k^\infty x f_X(x) \, dx
\]
\[
\geq \int_k^\infty x f_X(x) \, dx \geq \int_k^\infty k f_X(x) \, dx = k \int_k^\infty f_X(x) \, dx = k P(X \geq k)
\]

Rearranging gives

$$P(X \geq k) \leq \frac{E[X]}{k}$$