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PROBLEM

e Input: sequence of I elements X1, X2, s Xy from a known
universe U (e.g., 8-byte 1integers).

® Goal: perform a computation on the 1input, in a single
left to right pass where

0 Elements processed in real time

0 Can’t store the full data. => minimal storage requirement to maintain
working “summary?”



HEAVY HITTERS: KEYS THAT OCCUR MANY TIMES
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Applications:

® Determining popular products

® Computing frequent search queries
® Identifying heavy TCP -l
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COUNT-MIN SKETCH

® Maintain a short summary of the information that still
enables answering queries.

® Cousin of the Bloom filter

0 Bloom Filter solves the “membership problem”.

O We want to extend it to solve a counting problem.
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COUNT-MIN SKETCH

® FElegant small space data structure.
® Space used is independent of n.

® Is implemented in several real systems.
O AT&T used in network switches to analyze network traffic.

O Google uses a version on top of Map Reduce parallel processing
infrastructure and in log analysis.

® Huge literature on sketching and streaming algorithms
(algorithms 1like Distinct Elements, Heavy Hitters and
many many other very cool algorithms).
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AGENDA

o MARKDY'S INEQUALITY
o CHEBVSHEV'S INFQUALITY
o THE LA OF LARGE NUMBERS



MARKOV'S INEQUALLTY (INTUITION)

The score distribution of an exam is modelled by a rv X with range Qyx < [0,110! (for

extra credit).
If the average was‘E [X | = soitt most what percentage of the class could have gotten
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MARKOV'S INEQUALLTY (INTULTION)

The score distribution of an exam is modelled by a rv X with range Qy < [0,110] (for
extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?
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If the average was E[X] = 25, at most what percentage of the class could have gotten
100 (or higher)? ' <
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MARKOV'S INEQUALLTY (INTUITION)

The score distribution of an exam is modelled by a rv X with range Qx < [0,110] (for

e
Rt

extra credit).

\SL* C\u*s < \0
f

f the average was E[X] = 50, at most what percentage of the class could have gotten
100 (or higher)?

If the average was E[X] = 25, at most what percentage of the class could have gotten
100 (or higher)?
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MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or
continuous), and let k > 0. Then,
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MARKOV'S INEQUALLTY

Markov's Inequality: Let X > 0 be a nonnegative random variable (discrete or
continuous), and let k > 0. Then,
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MARKOY'S INEQUALLTY (PROOF)

Markov's Inequality: Let X > 0 be a nonnegative rv and let k > 0. Then,

P(X>k)<£

Proof (Markov):

0 k (%)
X > 0%‘[ ofx@dx = [ xfxCodx+ [ xfyGax
\ 0 0 k

Rearranging gives

> fooxfx(x)dx > fookfx(x)dx = kfoofx(x)dx =kP(X = k)
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