

PROBLEM

- Input: sequence of n elements $x_1, x_2, ..., x_n$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can't store the full data. => minimal storage requirement to maintain working "summary"

HEAVY HITTERS: KEYS THAT OCCUR MANY TIMES

$$x_1, x_2, x_3$$

 $32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4,$
 $f_{32}^{"} = 4$
Applications:
• Determining popular products
• Determining frequent search queries
• Identifying heavy TCP
 $\forall t \le n$
 $f_{x}^{+} : \# \text{ three element x has appeared in x_1, x_{21}, x_{21}
(These alts are heavy hitters")$

Output has size O(k) Provably impossible to solve this pables what you who sublinear space green he ight Count est according Modified good: (solve E-HH problem) 1) If fx > n x added to HH list (2) If some elt, say y, added to lest, then up. > 1-5 fy > - En ~ = 0.05n 0.04nEn= 0.01n

COUNT-MIN SKETCH

- Maintain a short summary of the information that still enables answering queries.
- Cousin of the Bloom filter
 - $\circ~$ Bloom Filter solves the "membership problem".
 - $\circ~$ We want to extend it to solve a counting problem.

COUNT-MIN SKETCH

Modified good: (solve E-HH publican) () If fx > 2 x added to HH list TI some elt, say y, added to lest, then wp. > 1-6 f" > 2 - En

dusigner specifies K, E, E => 6,2

20 annug 2 hash tables, each of size b. Keep

initialize tables with all Os when elt x shows up. Updake (x): & (=j=l increment (+;[h;(x)] +; [h;(x)] > f_x^+ (ount (x): return min t; [h;(x]] $(ent(x) \ge f_x^{t}$ if $(ount(x) \ge \frac{n}{k})$ add x to HH list h 1 -3 hz 1 2 he Example l=2 Xy XS 73 XI 3 3 h_(x)=5 X а 4 (cm+(x)=3

Assumptions D hash functions behave like random maps h,,-he: U -> {0,1,.., b-1} $\forall x \neq y \ Pr(h; (x) = h; (y)) = b$ E

Initialize tables with all Os
when
$$dt \ge shows up$$
.
Update (x): $\forall 1 \le j \le l$ increment $(\forall j [h_j(x)])$
(ount (x): return min $\ddagger j [h_j(x)]$
if (ount(x) $\ge n \atop k$, add $\ge t_0$ HH list

(xin, xit have just arrived) Fix time t. $Z_{j}^{t} \stackrel{a}{=} t_{j} \left[h_{j}(x) \right] \stackrel{a}{=}$ $E(\tilde{w}_{xy})$ E(z;) = fx + Z + {distry + x Jetron xy Way= J hjlx)=hjly otomust $=f_{\star}^{\star}$ Stx J = f, + t | Z fy $\leq f_{+}^{x} + \frac{n}{p}$ < <u>n</u> 1 $E(2_{j}^{+})-f_{x}^{+}\leq \frac{2}{6}$ ť,

 $Pr(2_{5}^{+}-f_{x}^{+} \ge -)=?$ $Z_{j}^{+}-f_{x}^{+} \leq \frac{1}{6}$ Pr(Z; -f, >2 Pr(X>, aE(W) < 2;-fx (- J) At $Pr((count(x) - f_x) > 2n_b)$ $= \Pr\left(\min\left(2, \frac{2}{\sqrt{2}}\right) - \frac{f_{x}}{2} > \frac{2n}{2}\right)$ $=Pr\left(\frac{Z_{1}-f_{x}^{2}}{2},\frac{\partial}{\partial}\right),\frac{Z_{2}-f_{x}^{2}}{2},\frac{\partial}{\partial}\right),-\frac{Z_{2}-f_{x}^{2}}{2},\frac{\partial}{\partial}\right)$ $\mathbb{T}P(z;-f_x^n,z_{\theta}^n)\leq \overline{z}, \overline{z}, \overline{z}^n$

L Modified good: (solve E-HH problem) X added to HH list $\frac{1}{2} \frac{1}{2}$ ť. adoled elt, say 9 L to lust En (out(x) 5=

COUNT-MIN SKETCH

- Elegant small space data structure.
- Space used is independent of n.
- Is implemented in several real systems.
 - $\circ~$ AT&T used in network switches to analyze network traffic.
 - Google uses a version on top of Map Reduce parallel processing infrastructure and in log analysis.
- Huge literature on sketching and streaming algorithms (algorithms like Distinct Elements, Heavy Hitters and many many other very cool algorithms).

6.1 TAIL BOUNDS

MOST SLIDES BY JOSHUA FAN AND ALEX TSUN

Agenda

- MARKOV'S INEQUALITY
- CHEBYSHEV'S INEQUALITY
- THE LAW OF LARGE NUMBERS

MARKOV'S INEQUALITY (INTUITION)

The score distribution of an exam is modelled by a rv X with range $\Omega_X \subseteq [0,110]$ (for extra credit).

If the average was E[X] = 50, at most what percentage of the class could have gotten 100 (or higher)?

 $\frac{1}{2}$

If the average was E[X] = 25, at most what percentage of the class could have gotten 100 (or higher)?

MARKOV'S INEQUALITY

<u>Markov's Inequality</u>: Let $X \ge 0$ be a nonnegative random variable (discrete or continuous), and let k > 0. Then,

MARKOV'S INEQUALITY

<u>Markov's Inequality</u>: Let $X \ge 0$ be a nonnegative random variable (discrete or continuous), and let k > 0. Then,

 $P(X \ge k) \le \frac{E[X]}{k}$

Proof (Markov):

$$X \ge 0 \qquad E[X] = \int_0^\infty x f_X(x) dx = \int_0^k x f_X(x) dx + \int_k^\infty x f_X(x) dx$$
$$\ge \int_k^\infty x f_X(x) dx \ge \int_k^\infty k f_X(x) dx = k \int_k^\infty f_X(x) dx = k P(X \ge k)$$

Rearranging gives

$$P(X \ge k) \le \frac{E[X]}{k}$$

