5.3 Law of Total Expectation
AGENDA

- Conditional Expectation
- Law of Total Expectation (LTE)
- Law of Total Probability (Continuous version)
Conditional Expectation

Conditional Expectation: Let X be a discrete random variable. Then, the conditional expectation of X given A is

$$
E[X \mid A] = \sum_{x \in \Omega_X} x \mathbb{P}(X = x \mid A)
$$

Linearity of expectation still applies to conditional expectation: $E[X + Y \mid A] = E[X \mid A] + E[Y \mid A]$
Law of Total Expectation

Law of Total Expectation (Event Version): Let X be a random variable, and let events A_1, \ldots, A_n partition the sample space. Then,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \mathbb{P}(A_i)$$
LINEARITY OF EXPECTATION APPLIES

To conditional expectation too!!

\[E(X + Y \mid A) = E(X \mid A) + E(Y \mid A) \]

\[E(aX + b \mid A) = a \cdot E(X \mid A) + b \]
Law of total Expectation (RV version)

Law of Total Expectation (Event Version): Let X be a random variable, and let events A_1, \ldots, A_n partition the sample space. Then,

$$
\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \mathbb{P}(A_i)
$$

Law of Total Expectation (RV Version): Suppose X and Y be discrete random variables. Then,

$$
\mathbb{E}[X] = \sum_{y} \mathbb{E}[X \mid Y = y] p_Y(y)
$$
Problem

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all the passengers.
Solution

X number of people who enter
Y number of stops

$E(Y) = \sum_{k=0}^{\infty} E(Y|X = k)P(X = k)$

$E(Y|X = k) = E(Y_1 + \ldots + Y_N|X = k)$

Y_i indicates a stop on floor i

$E(Y_i|X = k) = (1 - (1 - 1/N)^k)$

$Pr(X = k) = e^{-10} \frac{10^k}{k!}$
Law of total probability (Cont version)
Multivariate: From Discrete to Continuous

<table>
<thead>
<tr>
<th></th>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
</table>
| **Joint PMF/PDF** | $p_{X,Y}(x, y) = P(X = x, Y = y)$ | $f_{X,Y}(x, y)
eq P(X = x, Y = y)$ |
| **Joint CDF** | $F_{X,Y}(x, y) = \sum_{t \leq x} \sum_{s \leq y} p_{X,Y}(t, s)$ | $F_{X,Y}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t, s) \, ds \, dt$ |
| **Normalization** | $\sum_{x} \sum_{y} p_{X,Y}(x, y) = 1$ | $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = 1$ |
| **Marginal PMF/PDF** | $p_X(x) = \sum_{y} p_{X,Y}(x, y)$ | $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$ |
| **Expectation** | $E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X,Y}(x, y)$ | $E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) \, dx \, dy$ |
| **Conditional PMF/PDF** | $p_{X \mid Y}(x \mid y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$ | $f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)}$ |
| **Conditional Expectation** | $E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$ | $E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \, dx$ |
| **Independence** | $\forall x, y, p_{X,Y}(x, y) = p_X(x)p_Y(y)$ | $\forall x, y, f_{X,Y}(x, y) = f_X(x)f_Y(y)$ |
Multivariate: From Discrete to Continuous

<table>
<thead>
<tr>
<th></th>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint PMF/PDF</td>
<td>$p_{X,Y}(x,y) = P(X = x, Y = y)$</td>
<td>$f_{X,Y}(x,y) \neq P(X = x, Y = y)$</td>
</tr>
<tr>
<td>Joint CDF</td>
<td>$F_{X,Y}(x,y) = \sum_{t \leq x} \sum_{s \leq y} p_{X,Y}(t,s)$</td>
<td>$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$</td>
</tr>
<tr>
<td>Normalization</td>
<td>$\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$</td>
<td>$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$</td>
</tr>
<tr>
<td>Marginal PMF/PDF</td>
<td>$p_{X}(x) = \sum_{y} p_{X,Y}(x,y)$</td>
<td>$f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$</td>
</tr>
<tr>
<td>Expectation</td>
<td>$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$</td>
<td>$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$</td>
</tr>
<tr>
<td>Conditional PMF/PDF</td>
<td>$p_{X \mid Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$</td>
<td>$f_{X \mid Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$</td>
</tr>
<tr>
<td>Conditional Expectation</td>
<td>$E[X \mid Y = y] = \sum_{x} x p_{X \mid Y}(x \mid y)$</td>
<td>$E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) dx$</td>
</tr>
<tr>
<td>Independence</td>
<td>$\forall x,y, p_{X,Y}(x,y) = p_{X}(x)p_{Y}(y)$</td>
<td>$\forall x,y, f_{X,Y}(x,y) = f_{X}(x)f_{Y}(y)$</td>
</tr>
</tbody>
</table>
LAW OF TOTAL EXPECTATION (EXAMPLE FROM LAST TIME)

Show that if $X \sim \text{Geo}(p)$, then $\mu = E[X] = 1/p$ by using the LTE conditioning on the first flip.

$$\mu = E[X] = E[X \mid H]P(H) + E[X \mid T]P(T) \quad \text{(LTE)}$$
Law of Total Expectation (Example from Last Time)

Show that if $X \sim Geo(p)$, then $\mu = E[X] = 1/p$ by using the LTE conditioning on the first flip.

\[
\mu = E[X] = E[X \mid H]P(H) + E[X \mid T]P(T) \quad \text{(LTE)}
\]

\[
= 1 \cdot p + (E[1 + X]) \cdot (1 - p)
\]

\[
= p + (1 + E[X]) \cdot (1 - p)
\]

So,

\[
\mu = p + (1 + \mu)(1 - p) = p + 1 - p + \mu - \mu p = 1 + \mu - \mu p
\]

\[
0 = 1 - \mu p \rightarrow \mu = \frac{1}{p}
\]