5.2 JOINT CONTINUOUS DISTRIBUTIONS

ANNA KARLIN Most slides by Alex Tsun

fxy(xy) dx dy S Pr(x=X=x+dx, y= Y= y+dy)

RECAP	NPr(X=x, Y=z)	
	Discrete	Continuous
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y}(x,y) \neq \mathbb{P}(X=x,Y=y)$
Joint range/support $\Omega_{X,Y}$	$\{(x,y)\in\Omega_X\times\Omega_Y:p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y:f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x, s \le y} p_{X,Y}(t,s)$	$(F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t,s) ds dt$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$
Independence	Vxelx Yyely	Yxy Elx, ly
X,Y	$\left[P_{XY}(x,y) = P(X=x) P(y=x) - P(y=y) - P(y=$	
	xc lx yely	0
(x,y) = f(x)	x le precession des ce	JLX,Y missing

 $\mathcal{N}_{y} = \{2, 4\} \qquad \mathcal{N}_{x, y} = \{(1, 2), (1, 4), (2, 2), (3, 2), (3, 4)\} \qquad P_{x, y} (2, 4) = 0$

JOINT PDFs (EXAMPLE 1)

Λx=21,2,33

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

fxy= { the xz= ex c) Find fx(x) and Rx Λx=? [-1 R2-22, 1R7+22] a F-R, R 6) c) [0]17 2-xa d) I don't hav Fxy (x,y) dy $\mathbf{t}_{\mathbf{y}}$ XZERZ x+h=R 0.W. $\Omega_{X,Y} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$ h= VR-x3 $y = +\sqrt{R^2 - x^2}$ 14 $y = -\sqrt{R^2 - x^2}$

Another example Rx = 20,13 Ry = 20,1] Axy ~ 2 (0,0) (0,1) (1,0) (1,1) 3 $P_{X,Y}(x,y) = \begin{cases} \frac{1}{3} & (x,y) = \{0,0\}, (1,1)\} \\ \frac{1}{3} & (x,y) = \{0,1\}, (1,0)\} \end{cases}$ $p_{X}(x) = \begin{cases} \frac{1}{2} & x = 0 \\ \frac{1}{2} & x = 1 \end{cases}$ Py(y)= 1 = x=0 XOIG $P_{x}(0) = \frac{1}{2} = \frac{1}{2}$ In this example $\Lambda_{X,Y} = \Lambda_X \times Jl_Y$ but X & Y are not independent

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

 $\Omega_{X,Y} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

b. Write an expression for the joint PDF $f_{X,Y}(x, y)$ and carefully define it for all $x, y \in \mathbb{R}$.

 $f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2}, & x, y \in \Omega_{X,Y} \\ 0, & \text{otherwise} \end{cases}$

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

 $\Omega_{X,Y} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

c. Find Ω_X and write an expression that we could evaluate to find $f_X(x)$.

 $\Omega_X = [-R, R]$

 $f_X(x) = \int_{-\sqrt{R^2 - x^2}}^{+\sqrt{R^2 - x^2}} f_{X,Y}(x, y) dy$

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

 $\Omega_{X,Y} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

d. Let Z the distance from the center that the dart falls. Find Ω_Z and write an expression for E[Z].

$$Z = \sqrt{X^2 + Y^2}$$
$$\Omega_Z = [0, R]$$

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

 $\Omega_{X,Y} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

d. Let Z the distance from the center that the dart falls. Find Ω_Z and write an expression for E[Z].

$$Z = \sqrt{X^2 + Y^2}$$
$$\Omega_Z = [0, R]$$

 $E[Z] = \int_{-R}^{R} \int_{-\sqrt{R^2 - x^2}}^{+\sqrt{R^2 - x^2}} \sqrt{x^2 + y^2} f_{X,Y}(x, y) dy dx$

Suppose (X, Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

 $\Omega_{X,Y} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

e. Are X and Y independent?

No, $\Omega_{X,Y} \neq \Omega_X \times \Omega_Y$ (not a rectangle).

 $0 = f_{X,Y}(0.99R, 0.99R) \neq f_X(0.99R) f_Y(0.99R) > 0$

RANDOM PICTURE

Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

 $f_{X,Y}(x,y) = \begin{cases} ce^{-(y-x)}, & x, y \in [0,1] \text{ and } y \ge x \\ 0, & y < x \end{cases}$

Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

 $f_{X,Y}(x,y) = \begin{cases} ce^{-(y-x)}, & x,y \in [0,1] \text{ and } y \ge x \\ 0, & y < x \end{cases}$

a. Sketch the joint range $\Omega_{X,Y}$, and interpret it in English.

Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

 $f_{X,Y}(x,y) = \begin{cases} ce^{-(y-x)}, & x,y \in [0,1] \text{ and } y \ge x \\ 0, & y < x \end{cases}$

a. Sketch the joint range $\Omega_{X,Y}$, and interpret it in English.

Your score is at least the proportion of the time you study.

Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

e. Write an expression that we could evaluate to find E[Y].

Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

e. Write an expression that we could evaluate to find *E*[*Y*].

$$E[Y] = \int_0^1 y f_Y(y) dy = \int_0^1 \int_0^y cy e^{-(y-x)} dx \, dy$$

5.3 LAW OF TOTAL EXPECTATION

Agenda

- CONDITIONAL EXPECTATION
- LAW OF TOTAL EXPECTATION (LTE)

CONDITIONAL EXPECTATION

Conditional Expectation: Let X be a discrete random variable. Then, the conditional expectation of X given A is $\mathbb{E}[X \mid A] = \sum_{x \in \Omega_X} x \mathbb{P}(X = x \mid A)$

Linearity of expectation still applies to conditional expectation: $\mathbb{E}[X + Y \mid A] = \mathbb{E}[X \mid A] + \mathbb{E}[Y \mid A]$

 $X \sim Poisson(\lambda)$ $\Rightarrow A : X \leq 1$ $E(X|A) = \sum_{i=0}^{\infty} i \Pr[X=i|X=i)$ $= O \cdot \Pr[X=o|X=i) + 1 \cdot \Pr[X=i|X=i] + ...0^{65}$

LAW OF TOTAL EXPECTATION

Law of Total Expectation (Event Version): Let X be a random variable, and let events $A_1, ..., A_n$ partition the sample space. Then,

System that fails in step i independently
with probability p
X # steps to fail
E(X) ?

Let A be the event that system fails in first step.

$$E(X) = E(X|A)Pr(A) + E(X|\overline{A})Pr(\overline{A})$$
$$= p + (1 + E(X))(1 - p)$$
$$= 1 + (1 - p)E(X)$$
$$E(X) = \frac{1}{p}$$

PROBLEM

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all the passengers.

