JOINT DISTRIBUTIONS

ANNA KARLIN Most slides by Alex Tsun

JOINT DISTRIBUTIONS

- Given all of its user's ratings for different movies and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms.
- Given current traffic, pedestrian locations, weather, lights, etc, decide whether self-driving car should slow down or come to a stop?

5.1 JOINT DISCRETE DISTRIBUTIONS

AGENDA

- CARTESIAN PRODUCTS OF SETS
- JOINT PMFS AND EXPECTATION
- MARGINAL PMFS

CARTESIAN PRODUCT OF SETS

<u>Cartesian Product:</u> Let A, B be sets. The Cartesian product of A and B is denoted

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

A small example:

$$\{1,2,3\} \times \{4,5\} = \{(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)\}$$

Another example: The xy-plane (2D space) is denoted

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R})\}$$

If A, B are finite sets, then $|A \times B| = |A| \cdot |B|$ by the product rule of counting.

EXAMPLE: MMMMM 4-sided dice

Let X be the value of the blue die, and Y the value of the red die. Specify

$$\Omega_X = \{1,2,3,4\}$$

$$\Omega_Y = \{1,2,3,4\}$$

$$\Omega_{X,Y} = \Omega_X \times \Omega_Y$$

Specify the joint PMF $p_{X,Y}(x,y) = P(X = x, Y = y)$ for $x, y \in \Omega_{X,Y}$.

	:	= br(y=3)	9	t(1=3	3)
X\Y	1	2		3	4
1					
2				16	
3					
4					

Suppose I roll two fair 4-sided die independently. Let X be the value of the blue die, and Y the value of the red die. Specify

$$\Omega_X = \{1,2,3,4\}$$
 $\Omega_Y = \{1,2,3,4\}$
$$\Omega_{X,Y} = \Omega_X \times \Omega_Y$$

Specify the joint PMF $p_{X,Y}(x,y) = P(X = x, Y = y)$ for $x, y \in \Omega_{X,Y}$.

$$p_{X,Y}(x,y) = \begin{cases} 1/16, & x,y \in \Omega_{X,Y} \\ 0, & \text{otherwise} \end{cases}$$

X\Y	1	2	3	4
1	1/16	1/16	1/16	1/16
2	1/16	1/16	1/16	1/16
3	1/16	1/16	1/16	1/16
4	1/16	1/16	1/16	1/16

JOINT PMFS AND EXPECTATION

Joint PMFs: Let X, Y be discrete random variables. The joint PMF of X and Y is

The joint range is

Note that

 $p_{X,Y}(a,b) = P(X = a, Y = b)$

Suppose I roll two fair 4-sided die independently.

Let
$$X$$
 be the value of the blue die, and Y the value of the red die. Let $U = \min \{X, Y\}$ and $V = \max \{X, Y\}$.

$$\Omega_{U,V} = \{(u,v) \in \Omega_U \times \Omega_V : u \leq v\} \neq \Omega_U \times \Omega_V$$

 $\Omega_V = \{1,2,3,4\}$

Specify the joint PMF $p_{U,V}(u,v) = P(U=u,V=v)$ for $u,v\in\Omega_{U,V}$.

$$P_{U_1V(1_13)} = P(U=1, V=3) = ?$$

 $\Omega_{II} = \{1,2,3,4\}$

Suppose I roll two fair 4-sided die independently. Let X be the value of the blue die, and Y the value of the red die. Let $U = \min \{X, Y\}$ and $V = \max \{X, Y\}$.

$$\Omega_{U} = \{1,2,3,4\} \hspace{1cm} \Omega_{V} = \{1,2,3,4\}$$

$$\Omega_{U,V} = \{(u,v) \in \Omega_U \times \Omega_V : u \le v\} \ne \Omega_U \times \Omega_V$$

Specify the joint PMF $p_{U,V}(u,v) = P(U=u,V=v)$ for $u,v \in \Omega_{U,V}$.

$$p_{U,V}(u,v) = \begin{cases} 2/16, & u,v \in \Omega_U \times \Omega_V, \\ 1/16, & u,v \in \Omega_U \times \Omega_V, \\ 0, & \text{otherwise} \end{cases} v > u$$

U\V	1	2	3	4
1	1/16	2/16	2/16	2/16
2		1/16	2/16	2/16
3	0		1/16	2/16
4	0	0		1/16

Suppose I roll two fair 4-sided die independently. Let X be the value of the blue die, and Y the value of the red die. Let $U = \min \{X, Y\}$ and $V = \max \{X, Y\}$.

What is $p_U(u)$ for $u \in \Omega_U$?

$$p_U(u) = \begin{cases} u = 1 \\ u = 2 \\ u = 3 \\ u = 4 \end{cases}$$

Suppose I roll two fair 4-sided die independently. Let X be the value of the blue die, and Y the value of the red die. Let $U = \min \{X, Y\}$ and $V = \max \{X, Y\}$.

What is $p_U(u)$ for $u \in \Omega_U$?

$$p_U(u) = \begin{cases} 7/16, & u = 1 \\ 5/16, & u = 2 \\ 3/16, & u = 3 \\ 1/16, & u = 4 \end{cases}$$

iiue X, }		5	L	J	5
	UVV	1	2	3	4
	1	1/16	2/16	2/16	2/16
	2	0	1/16	2/16	2/16
	3	0	0	1/16	2/16
	4	0	0	0	1/16

maginal prof

4

Pu(w) = Z Puv(w)

EXAMPLE: WEIRD DICE AGAIN

Suppose I roll two fair 4-sided die independently. Let X be the value of the blue die, and Y the value of the red die. Let $U = \min \{X, Y\}$ and $V = \max \{X, Y\}$.

9	(u,v)=uv2

UVV	1	2	3	4
.1	1.1/16	4-2/16	q • 2/16	2/16
2	0	1/16	18- 2/16	2/16
3	0	0	1/16	2/16
4	0	0	0	1/16

JOINT PMFS AND EXPECTATION

Joint PMFs: Let X, Y be discrete random variables. The joint PMF of X and Y is

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

The joint range is

$$\Omega_{X,Y} = \{(c,d): p_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Note that

$$\sum_{(s,t)\in\Omega_{X,Y}}p_{X,Y}(s,t)=1$$

If $g: \mathbb{R}^2 \to \mathbb{R}$ is a function, then

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

MARGINAL PMFS

Marginal PMFs: Let X, Y be discrete random variables. The marginal PMF of X is

MARGINAL PMFS

Marginal PMFs: Let X, Y be discrete random variables. The marginal PMF of X is

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, the marginal PMF of Y is

$$p_Y(d) = \sum_{c \in \Omega_Y} p_{X,Y}(c,d)$$

MARGINAL PMFS

Marginal PMFs: Let X, Y be discrete random variables. The marginal PMF of X is

$$p_X(a) = \sum_{b \in \Omega_Y} p_{X,Y}(a,b)$$

Similarly, the marginal PMF of Y is

$$p_Y(d) = \sum_{c \in \Omega_X} p_{X,Y}(c,d)$$

(Extension) If Z is also a discrete random variable, then the marginal PMF of Z is

$$(p_{Z}(z)) = \sum_{x \in \Omega_{X}} \sum_{y \in \Omega_{Y}} p_{X,Y,Z}(x,y,z)$$

$$(z) = \sum_{x \in \Omega_{X}} \sum_{y \in \Omega_{Y}} p_{X,Y,Z}(x,y,z)$$

$$(z) = \sum_{x \in \Omega_{X}} \sum_{y \in \Omega_{Y}} p_{X,Y,Z}(x,y,z)$$

<u>Independence (DRVs)</u>: Discrete random variables X, Y are independent, written $X \perp Y$, if for all $x \in \Omega_X$ and $y \in \Omega_Y$,

$$p_{X,Y}(x,y) = p_X(x)p_Y(y) - R(X=X,Y=Y)$$

Recall $\Omega_{X,Y} = \{(x,y): p_{X,Y}(x,y) > 0\} \subseteq \Omega_X \times \Omega_Y$. A necessary but not sufficient condition for independence is that $\Omega_{X,Y} = \Omega_X \times \Omega_Y$. That is, if $\Omega_{X,Y} \neq \Omega_X \times \Omega_Y$, then X and Y cannot be independent, but if $\Omega_{X,Y} = \Omega_X \times \Omega_Y$, then we have to check the condition.

This is because if there is some $(a,b) \in \Omega_X \times \Omega_Y$ but not in $\Omega_{X,Y}$, then $p_{X,Y}(a,b) = 0$ but $p_X(a) > 0$ and $p_Y(b) > 0$, violating independence.

VARIANCE ADDS FOR INDEPENDENT RVS

If X, Y are independent random variables $X \perp Y$, then

$$Var(X + Y) = Var(X) + Var(Y)$$

This property relies on the fact that they are independent, whereas linearity of expectation always holds, regardless. If $a, b, c \in \mathbb{R}$ are scalars, then

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y)$$

If $X \perp Y$, then E[XY] = E[X]E[Y].

RANDOM PICTURE

5.2 JOINT CONTINUOUS DISTRIBUTIONS

AGENDA

- JOINT PDFS AND EXPECTATION
- MARGINAL PDFS
- INDEPENDENCE
- MULTIVARIATE: FROM DISCRETE TO CONTINUOUS

JOINT PDFS AND EXPECTATION

Joint PDFs: Let X, Y be continuous random variables. The joint PDF of X and Y is

The joint range is

 $\Omega_{X,Y} = \{(c,d): f_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$

 $f_{X,Y}(a,b)$

LXA (a'p) gx gh LXA (a'p) gx gh

JOINT PDFS AND EXPECTATION

Joint PDFs: Let X, Y be continuous random variables. The joint PDF of X and Y is

JOINT PDFS AND EXPECTATION

<u>Joint PDFs:</u> Let X, Y be continuous random variables. The joint PDF of X and Y is

$$f_{X,Y}(a,b)$$

The joint range is

$$\Omega_{X,Y} = \{(c,d): f_{X,Y}(c,d) > 0\} \subseteq \Omega_X \times \Omega_Y$$

Note that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(u,v) du dv = 1$$

If $g: \mathbb{R}^2 \to \mathbb{R}$ is a function, then

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(s,t) f_{X,Y}(s,t) ds dt$$

MARGINAL PDFS

<u>Marginal PDFs:</u> Let X, Y be continuous random variables. The marginal PDF of X is

MARGINAL PDFS

Marginal PDFs: Let X, Y be continuous random variables. The marginal PDF of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Similarly, the marginal PDF of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

MARGINAL PDFS

Marginal PDFs: Let X, Y be continuous random variables. The marginal PDF of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

Similarly, the marginal PDF of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

(Extension) If Z is also a continuous random variable, then the marginal PDF of Z is

$$f_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dx dy$$

<u>Independence (CRVs)</u>: Continuous random variables X, Y are independent, written $X \perp Y$, if for all $x \in \Omega_X$ and $y \in \Omega_Y$,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

<u>Independence (CRVs)</u>: Continuous random variables X, Y are independent, written $X \perp Y$, if for all $x \in \Omega_X$ and $y \in \Omega_Y$,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Recall $\Omega_{X,Y} = \{(x,y): f_{X,Y}(x,y) > 0\} \subseteq \Omega_X \times \Omega_Y$. A necessary but not sufficient condition for independence is that $\Omega_{X,Y} = \Omega_X \times \Omega_Y$. That is, if $\Omega_{X,Y} \neq \Omega_X \times \Omega_Y$, then X and Y cannot be independent, but if $\Omega_{X,Y} = \Omega_X \times \Omega_Y$, then we have to check the condition.

<u>Independence (CRVs):</u> Continuous random variables X, Y are independent, written $X \perp Y$, if for all $x \in \Omega_X$ and $y \in \Omega_Y$,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Recall $\Omega_{X,Y}=\left\{(x,y):f_{X,Y}(x,y)>0\right\}\subseteq\Omega_X\times\Omega_Y$. A necessary but not sufficient condition for independence is that $\Omega_{X,Y}=\Omega_X\times\Omega_Y$. That is, if $\Omega_{X,Y}\neq\Omega_X\times\Omega_Y$, then X and Y cannot be independent, but if $\Omega_{X,Y}=\Omega_X\times\Omega_Y$, then we have to check the condition.

This is because if there is some $(a,b) \in \Omega_X \times \Omega_Y$ but not in $\Omega_{X,Y}$, then $f_{X,Y}(a,b) = 0$ but $f_X(a) > 0$ and $f_Y(b) > 0$, violating independence.

JOINT PDFS (EXAMPLE 1)

Suppose (X,Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration

answers. Take care in setting up the limits of integration. Find and sketch the joint range $\Omega_{X,Y}$. X=x, Y=y

Suppose (X,Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

$$\Omega_{X,Y} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$$

$$y = +\sqrt{R^2 - x^2}$$

$$y = -\sqrt{R^2 - x^2}$$

Suppose (X,Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range $\Omega_{X,Y}$.

$$\Omega_{X,Y} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$$

b. Write an expression for the joint PDF $f_{X,Y}(x,y)$ and carefully define it for all $x,y \in \mathbb{R}$.

Suppose (X,Y) are jointly and uniformly distributed on the circle of radius R centered at the origin (e.g., a dart throw). Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration.

a. Find and sketch the joint range Ω_{XY} .

$$\Omega_{XY} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$$

b. Write an expression for the joint PDF $f_{X,Y}(x,y)$ and carefully define it for all $x,y \in \mathbb{R}$.

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2}, & x,y \in \Omega_{X,Y} \\ 0, & \text{otherwise} \end{cases}$$