DISTINCT ELEMENTS

ANNA KARLIN With many slides by Luxi Wang, Shreya Jayaraman, Alex Tsun and Jeff Ullman

DATA MINING

- In many data mining situations, the data is not known ahead of time.
- Examples:
 - Google queries
 - Twitter or Facebook status updates
 - Youtube video views
- In some ways, best to think of the data as an infinite stream that is non-stationary (distribution changes over time)

STREAM MODEL

- Input elements (e.g. Google queries) enter/arrive one at a time.
- We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream using a limited amount of memory?

PROBLEM

- Input: sequence of N elements $x_1, x_2, ..., x_N$ from a known universe U (e.g., 8-byte integers).
- Goal: perform a computation on the input, in a single left to right pass where
 - Elements processed in real time
 - Can't store the full data. => use minimal amount of storage while maintaining working "summary"

Applications:

• IP packet streams: How many distinct IP addresses or IP flows (source+destination IP, port, protocol)

 $\circ\;$ Anomaly detection, traffic monitoring

- Search: How many distinct search queries on Google on a certain topic yesterday
- Web services: how many distinct users (cookies) searched/browsed a certain term/item
 - $\circ~$ Advertising, marketing trends, etc.

COUNTING DISTINCT ELEMENTS 32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4,

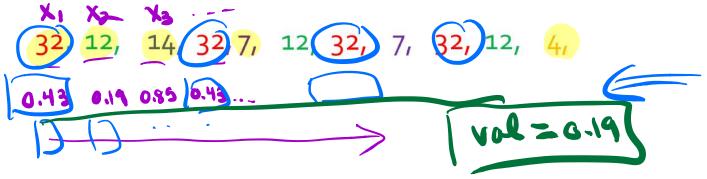
- Want to compute number of **distinct** keys in the stream.
- How to do this without storing all the elements?

• Yet another super cool application of probability (and hashing)

A NAIVE SOLUTION, COUNTING!

Store the **M** distinct user IDs in a hash table.

Space requirement: 0(n)



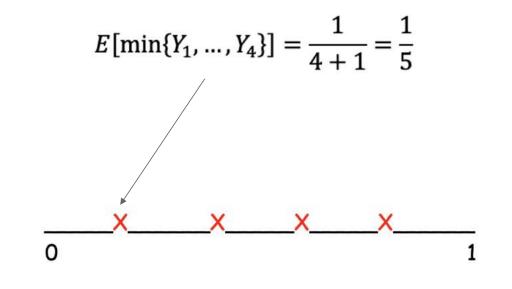
CONSIDERING THE NUMBER OF USERS OF YOUTUBE, AND THE NUMBER OF VIDEOS ON YOUTUBE, THIS IS NOT FEASIBLE.

Consider a hash function $h: \mathcal{U} \to [0,1]$ For distinct values in \mathcal{U} , the function maps to iid (independent and identically distributed) Unif(0,1) random numbers.

h(32) = 0.43 h(12) = 0.19 h(14) = 0.85h(7) = 0.61

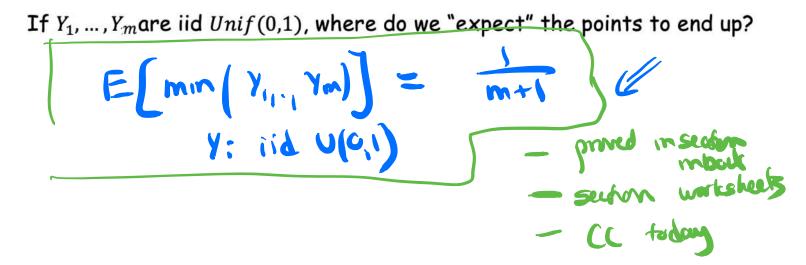
Note that, if you were to feed in two equivalent elements, the function returns the **same** number.

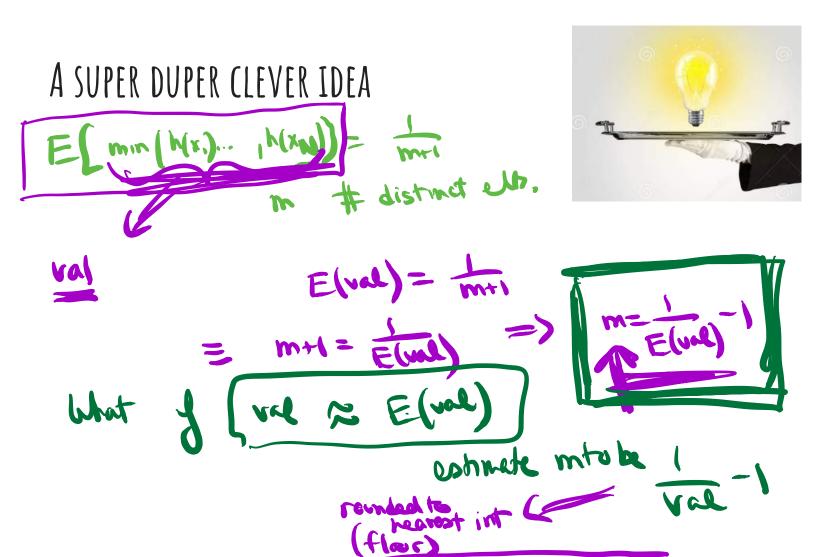
Track minimum hash value seen so for inthis ex. $\min(h(x_1),\dots,h(x_N))$ 0.19 u: ~u(0,1) m # district elts min $(U_{i}, U_{a_{1}}, U_{m})$

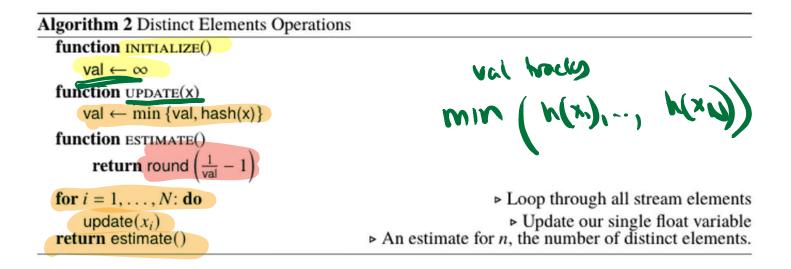

MIN OF IID UNIFORMS

If $Y_1, ..., Y_m$ are iid Unif(0,1), where do we "expect" the points to end up? $E(Y_{i})$ m = 1E(mm (Y, Ya)) = 3 m = 2m = 4

MIN OF IID UNIFORMS


If $Y_1, ..., Y_m$ are iid Unif(0,1), where do we "expect" the points to end up?




MIN OF IID UNIFORMS

h(32) = 0.43=0.61 X3 X X XN 32 14 5 32 17 32 32 17 5 (val) h(x) = 0.191 SI SN Л m = round [0.1 estructed of # distruct efts. 10.19 4.26 (5

THE DISTINCT ELEMENTS ALGORITHM

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

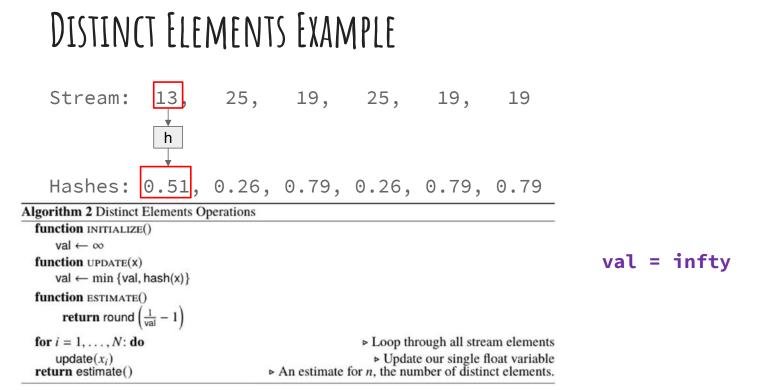
 Algorithm 2 Distinct Elements Operations

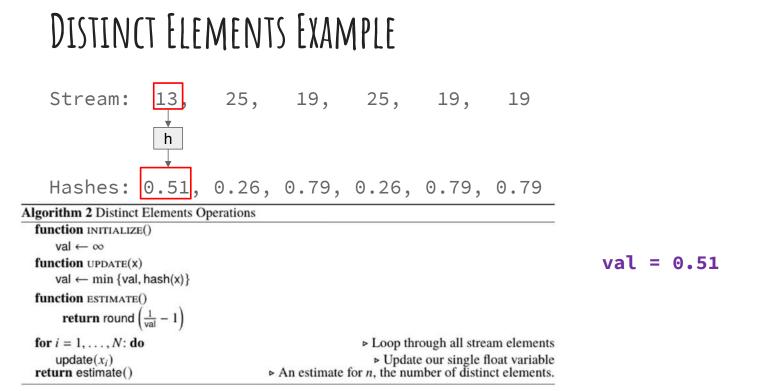
 function INITIALIZE()

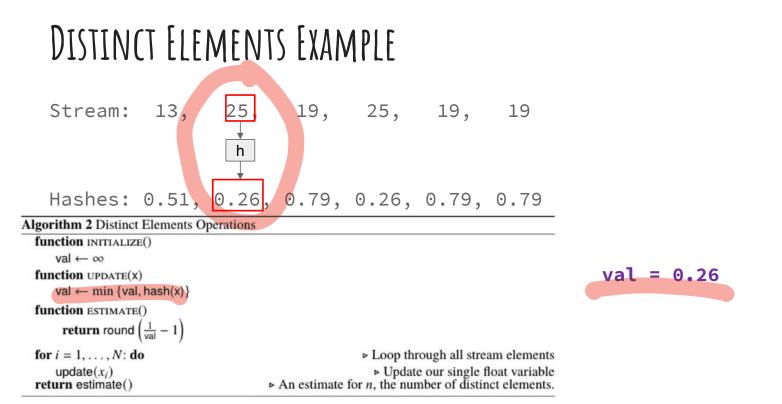
 val $\leftarrow \infty$

 function UPDATE(X)

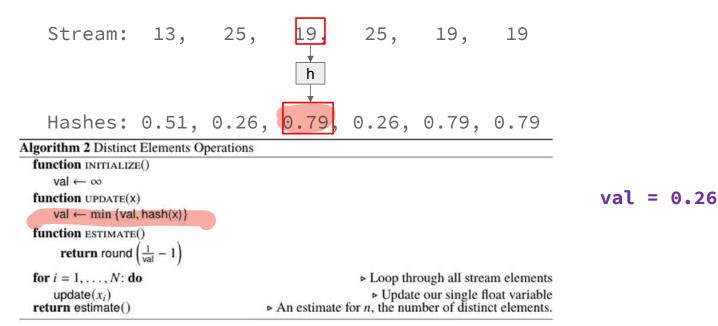
 val $\leftarrow \min \{val, hash(x)\}$


 function ESTIMATE()


 return round $\left(\frac{1}{val} - 1\right)$


 for $i = 1, \dots, N$: do
 > Loop through all stream elements

 update(x_i)
 > An estimate for n, the number of distinct elements.


val = infty

Stream: 13, 25, 19, 25, 19, 19 h Hashes: 0.51, 0.26, 0.79, 0.26 0.79, 0.79 Algorithm 2 Distinct Elements Operations function INITIALIZE() val $\leftarrow \infty$ function UPDATE(X) val $\leftarrow \min \{ val, hash(x) \}$ function ESTIMATE() return round $\left(\frac{1}{val} - 1\right)$ for i = 1, ..., N: do > Loop through all stream elements $update(x_i)$

return estimate()

val = 0.26

> Update our single float variable
> An estimate for n, the number of distinct elements.

 function INITIALIZE()

 val $\leftarrow \infty$

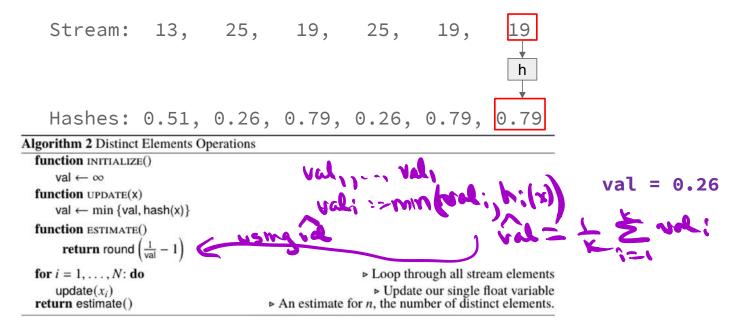
 function UPDATE(x)

 val $\leftarrow \min \{val, hash(x)\}$

 function ESTIMATE()

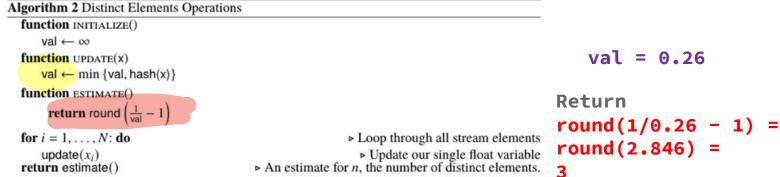
 return round $\left(\frac{1}{val} - 1\right)$

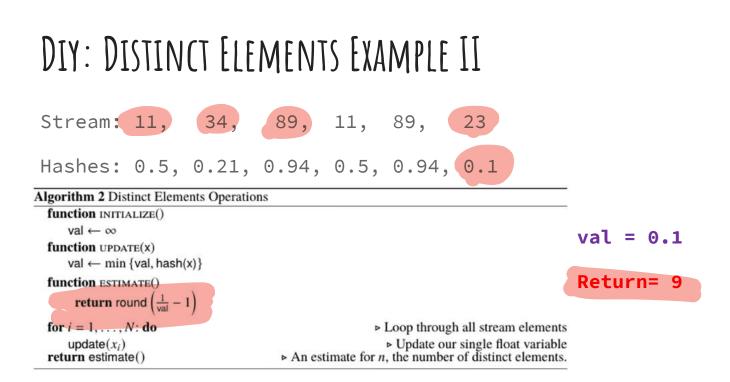
 for $i = 1, \dots, N$: do


 update(x_i)

 return estimate()

 \leftarrow An estimate for n, the number of distinct elements.


val = 0.26



SUMMARY SO FAR
h:
$$U \rightarrow (0,1)$$

trock val:= min $h(x_i)$
 $(x_i) \rightarrow (0,1)$
 $(x_i) \rightarrow (0,1)$

distact m PROBLEM Var(val) ~ (m+1)2 5 (val) 2 1 m+1 many > 0,999 o quant

HOW CAN WE REDUCE THE VARIANCE? Repetitory hip-, he kindep hash the. Let h; (*;)~ v(0,1) of these indep] $h_{i}(x_{i}) = min (U_{i_{1}}, ..., U_{n})$ $h_{i}(x_{i}) = min (U_{i_{1}}, ..., U_{n})$ track vol, = min (h, (x.)... vol, = min (h, (x.)... hx(xu))=min U, min (hk(x) . Vol

val = 1 (val, +val 2 + ... + val K) E(vil) a) mil E(vel;) ~ Imt b) K(mri) E(val)= E(+ (val, +val 2 + . +val K)) c) <u>k</u> (mri) d) I don't know $= \bigvee_{V} E[ual_{i}] + E[ual_{a}]_{i} \cdot E[ual_{a}]_{i}$ Var (X) $\alpha) \approx (m+1)^{2}$ = X mri = mi Von(val) = Von (k (val, + ... + val)) b) ~ Là (mt1)à = to Var(val, + ... + valc)) $() = \frac{1}{k(m+1)} \lambda$ Vorlat indig to (val,) + ... + Va(val) d) I don't know, -a la

= $\frac{1}{k^2}$ $\frac{k}{(m+1)^2} = \frac{1}{k(m+1)^2}$ Var (val;) ~ (mt)j2 S (val)= VR (mrs) C mil $\frac{\chi_i = \chi_j}{h(\chi_i) = h(\chi_j)}$ $(x_{ij}) = \min \left(h(x_i)_{i-1}, h(x_{ij}) \right)$ $= \min \left(U_{i,j}, \dots, U_{ij} \right)$ X I XN m distinct all h(xi) h(xin) Xin Xim $E(ue) = E[min(U_{ij}, U_{ij})] = \frac{1}{m+1}$

CODING ON PSET 6

You will use a hash function $h: \mathcal{U} \to [0,1]$ For distinct values in \mathcal{U} , the function maps to iid (independent and identically distributed) Unif(0,1) random numbers.

Note that, if you were to feed in two equivalent elements, the function returns the **same** number.

We will implement the hash function for you! Just know that you can consider it an iid uniform continuous random variables for each of the values being hashed.

TO DO BETTER...

- we will keep track of K DistElts classes each with its own independent hash function
- 2. take the mean of our K mins to get a better estimate of the min
- 3. and then apply the same trick as earlier to give an estimate for the number of distinct elements based on this min that we saw.

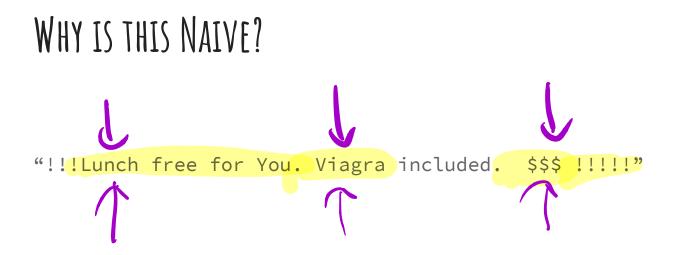
JOINT DISTRIBUTIONS

ANNA KARLIN Most slides by Alex Tsun

5.1 JOINT DISCRETE DISTRIBUTIONS

AGENDA

- MOTIVATION
- CARTESIAN PRODUCTS OF SETS
- JOINT PMFS AND EXPECTATION
- MARGINAL PMFS

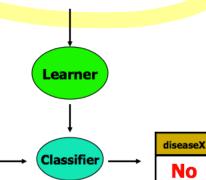

NAIVE BAYES CLASSIFIER - WHAT WE CALCULATE

 $\mathbb{P}(\text{spam} \mid \text{"You buy Viagra!"}) = \frac{\mathbb{P}(\text{"You buy Viagra!"} \mid \text{spam}) \mathbb{P}(\text{spam})}{\mathbb{P}(\text{"You buy Viagra!"})}$

 $= \frac{\mathbb{P}(\{"you","buy","viagra"\}| spam) \mathbb{P}(spam)}{\mathbb{P}(\{"you","buy","viagra"\}| spam) \mathbb{P}(spam) + \mathbb{P}(\{"you","buy","viagra"\}| ham) \mathbb{P}(ham)} [LTP]$

NAIVE BAYES CLASSIFIER - THE NAIVE PART

 $\mathbb{P}(\{\text{"you", "buy", "viagra"} \mid \text{spam}) \\ \approx \mathbb{P}(\text{"you"} \mid \text{spam}) \mathbb{P}(\text{"buy"} \mid \text{spam}) \mathbb{P}(\text{"viagra"} \mid \text{spam})$


UBIQUITOUS IN ML Pr (x.=35, 8P=15,....

Given "labeled data" h h h

La						
	Temp.	BP.	Sore Throat	 Colour	diseaseX	
	35	95	Y	 Pale	No	
	22	110	N	 Clear	Yes	
	:	:		:	:	
	10	87	N	 Pale	No	

 Learn CLASSIFIER, that can predict label of NEW instance

Temp	np BP Sore- Throa		 Color	diseaseX
32	90	N	 Pale	?

