

POISSON RV EXAMPLE

Suppose Lookbook gets on average 120 new users per hour, and Quickgram gets 180 new users per hour, independently. What is the probability that, combined, less than 2 users sign up in the next minute?

Convert λ 's to the same unit of interest. For us, it's a minute.

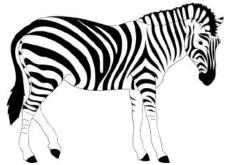
 $X \sim Poi(2 \text{ users/min})$ $Y \sim Poi(3 \text{ users/min})$

 $Z = X + Y \sim Poi(2+3) = Poi(5)$

 $P(Z < 2) = p_Z(0) + p_Z(1) = e^{-5} \frac{5^0}{0!} + e^{-5} \frac{5^1}{1!} = 6e^{-5} \approx 0.04$

THE ZOO OF DISCRETE RV'S

- THE BERNOULLI RV
- THE BINOMIAL RV
- THE GEOMETRIC RV
- THE UNIFORM RV
- THE POISSON RV



- THE NEGATIVE BINOMIAL RV
- THE HYPERGEOMETRIC RV

random variables

Important Examples:

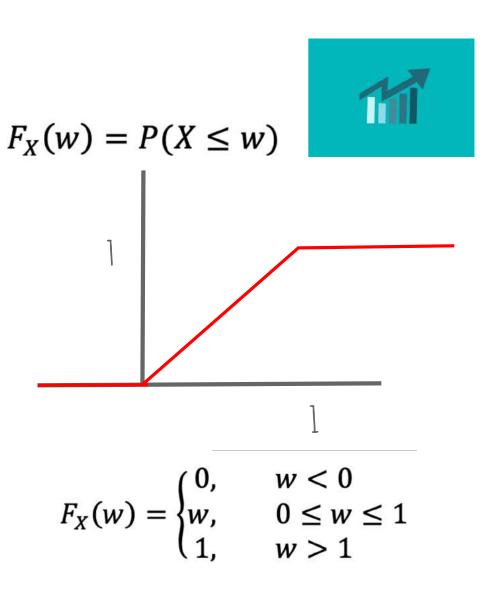
Uniform(a,b): $P(X = i) = \frac{1}{b-a+1}$ $\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)(b-a+2)}{12}$ Bernoulli(p): P(X = 1) = p, P(X = 0) = 1-p $\mu = p, \sigma^2 = p(1-p)$ Binomial(n,p) $P(X = i) = {n \choose i} p^i (1-p)^{n-i}$ $\mu = np, \sigma^2 = np(1-p)$ Poisson(λ): $P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$ $\mu = \lambda, \sigma^2 = \lambda$ Bin(n,p) \approx Poi(λ) where $\lambda = np$ fixed, $n \rightarrow \infty$ (and so $p = \lambda/n \rightarrow 0$) Geometric(p) $P(X = k) = (1-p)^{k-1}p$ $\mu = 1/p, \sigma^2 = (1-p)/p^2$

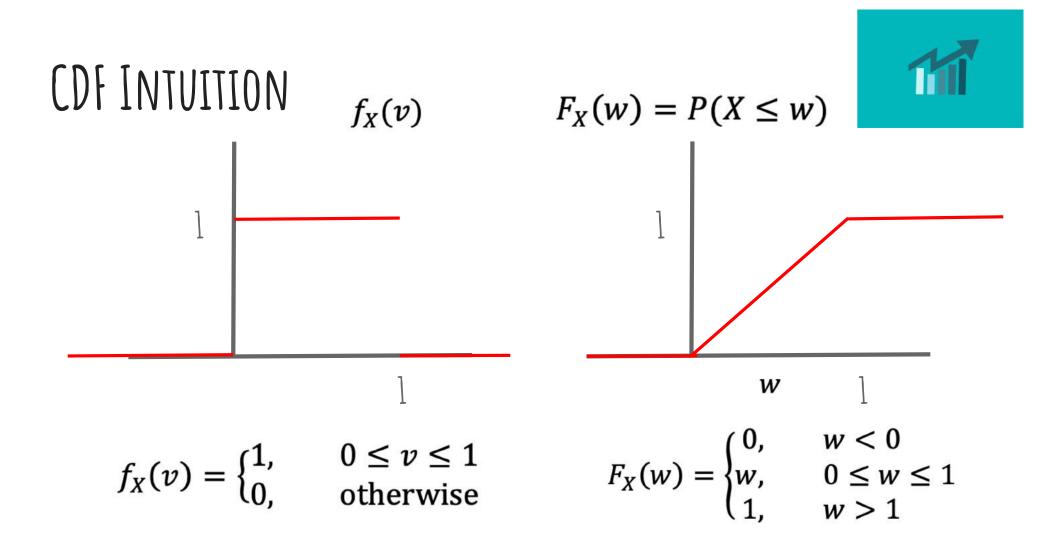
PROBABILITY 4.1 CONTINUOUS RANDOM VARIABLES BASICS

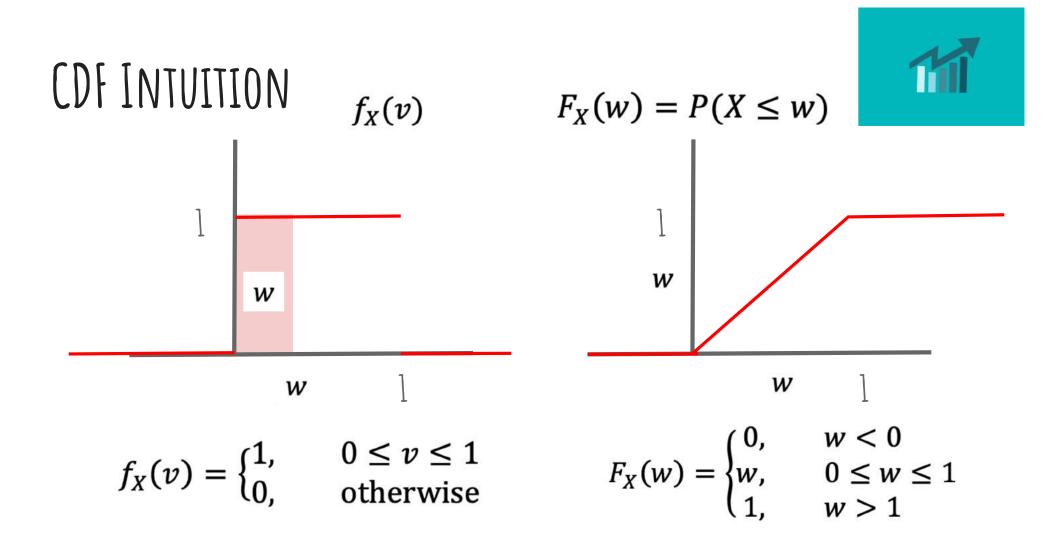
ANNA KARLIN Most Slides by Alex Tsun

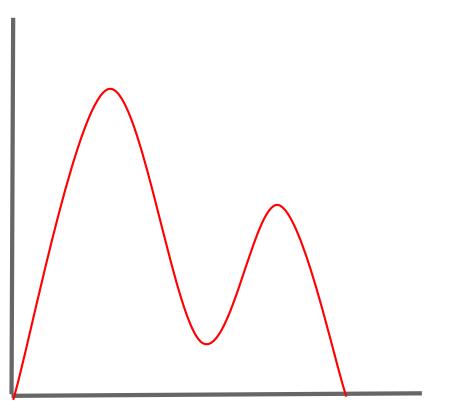
AGENDA

- PROBABILITY DENSITY FUNCTIONS (PDFS)
- CUMULATIVE DISTRIBUTION FUNCTIONS (CDFS)
- FROM DISCRETE TO CONTINUOUS

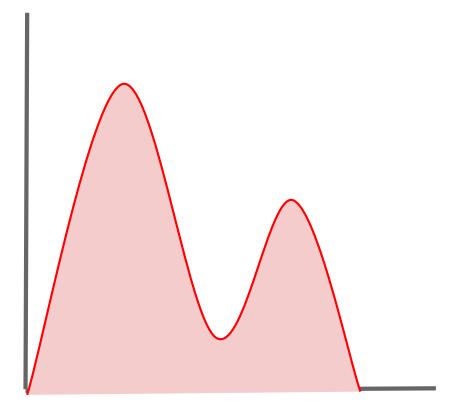






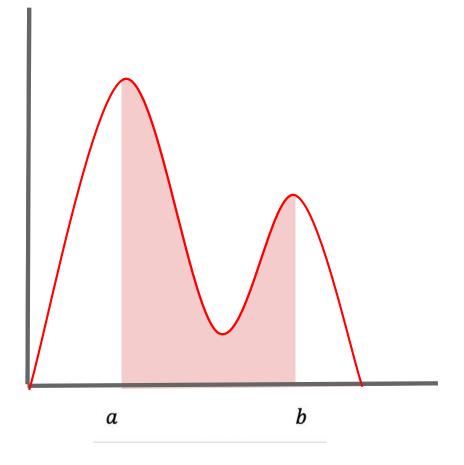


$f_X(z) \ge 0$ for all $z \in \mathbb{R}$



$f_X(z) \ge 0$ for all $z \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$



 $f_X(z) \ge 0$ for all $z \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$P(a \le X \le b) = \int_a^b f_X(w) dw$$

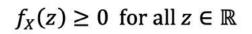
 $f_X(z) \ge 0$ for all $z \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$P(a \le X \le b) = \int_a^b f_X(w) dw$$

$$P(X = y) = P(y \le X \le y) = \int_y^y f_X(w) dw = 0$$

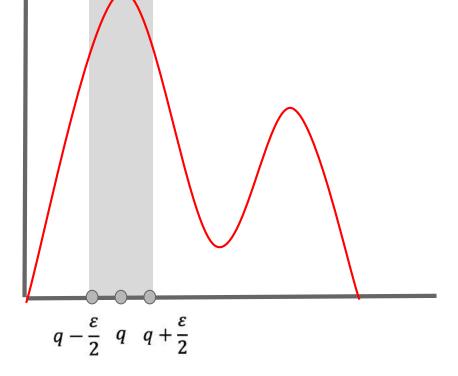
y

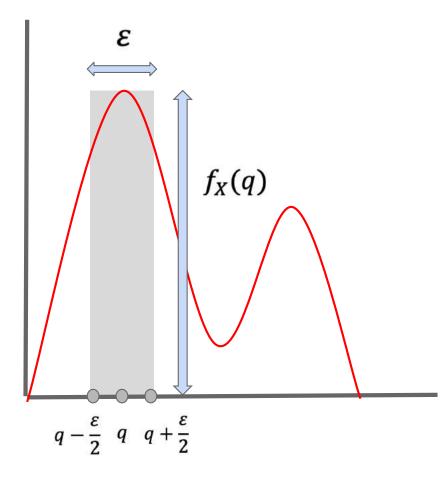


$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$P(a \le X \le b) = \int_a^b f_X(w) dw$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_{X}(w) dw = 0$$
$$P(X \approx q) \approx P\left(q - \frac{\varepsilon}{2} \le X \le q + \frac{\varepsilon}{2}\right)$$





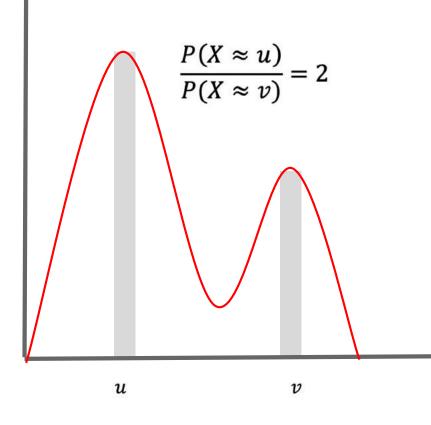
 $f_X(z) \ge 0$ for all $z \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$P(a \le X \le b) = \int_a^b f_X(w) dw$$

$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_X(w) dw = 0$$

$$P(X \approx q) \approx P\left(q - \frac{\varepsilon}{2} \le X \le q + \frac{\varepsilon}{2}\right) \approx \varepsilon f_X(q)$$



 $f_X(z) \ge 0$ for all $z \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$P(a \le X \le b) = \int_a^b f_X(w) dw$$

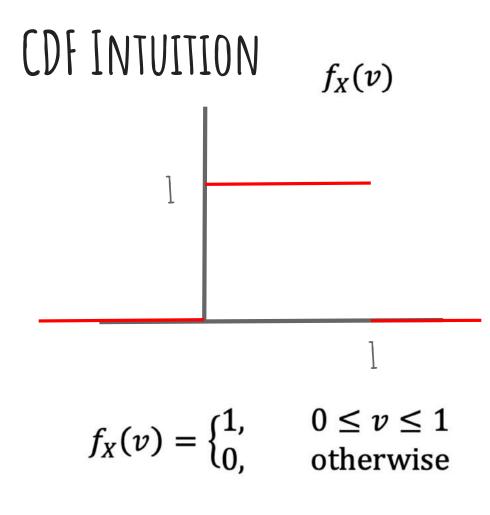
$$P(X = y) = P(y \le X \le y) = \int_{y}^{y} f_{X}(w) dw = 0$$
$$P(X \approx q) \approx P\left(q - \frac{\varepsilon}{2} \le X \le q + \frac{\varepsilon}{2}\right) \approx \varepsilon f_{X}(q)$$
$$\frac{P(X \approx u)}{P(X \approx v)} = \frac{\varepsilon f_{X}(u)}{\varepsilon f_{X}(v)} = \frac{f_{X}(u)}{f_{X}(v)}$$

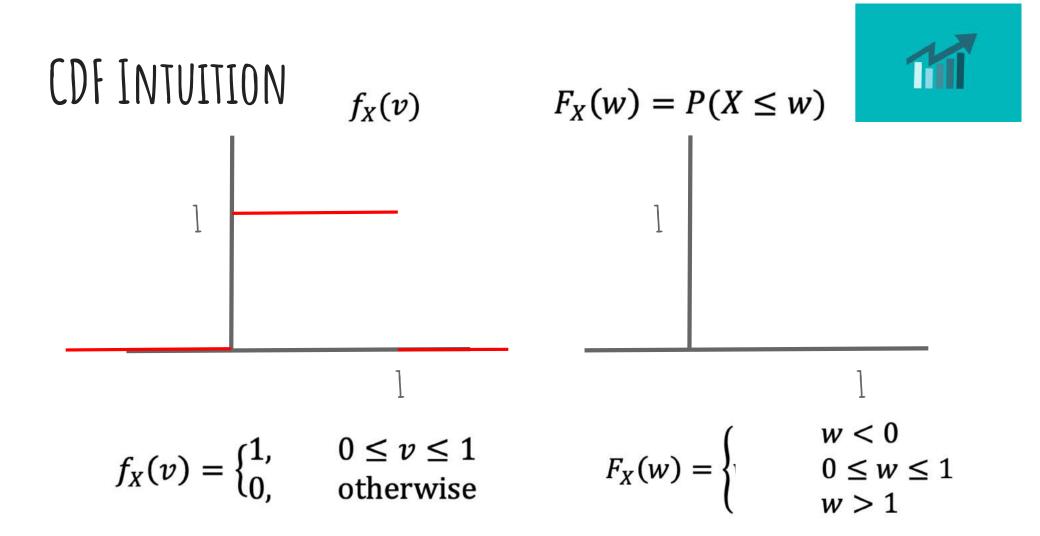
PROBABILITY DENSITY FUNCTIONS (PDFS)

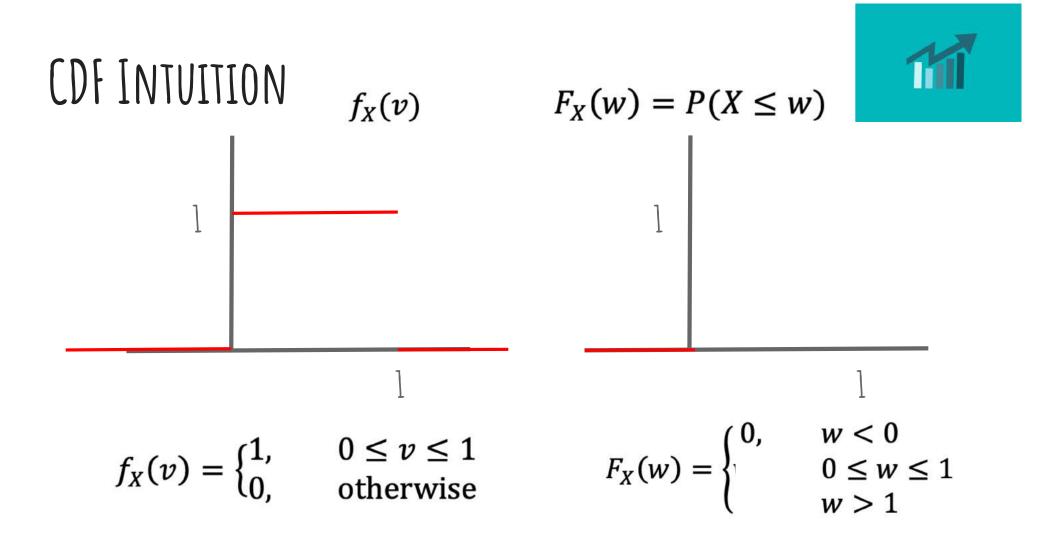
<u>Probability Density Function (PDF)</u>: Let X be a continuous rv (one whose range is typically an interval or union of intervals). The probability density function (PDF) of X is the function $f_X : \mathbb{R} \to \mathbb{R}$ such that

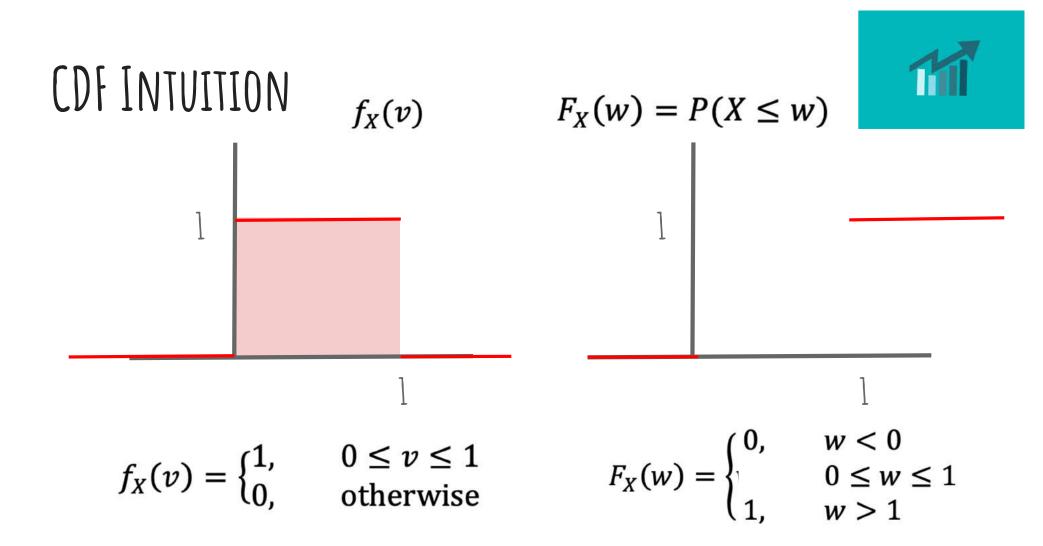
- $f_X(z) \ge 0$ for all $z \in \mathbb{R}$.
- $\int_{-\infty}^{\infty} f_X(t) dt = 1.$
- $P(a \le X \le b) = \int_a^b f_X(w) dw.$
- P(X = y) = 0 for any $y \in \mathbb{R}$.
- The probability that X is close to q is proportional to $f_X(q)$: $P(X \approx q) \approx P\left(q \frac{\varepsilon}{2} \le X \le q + \frac{\varepsilon}{2}\right) \approx \varepsilon f_X(q)$.
- Ratios of probabilities of being near points are maintained: $\frac{P(X \approx u)}{P(X \approx v)} = \frac{\varepsilon f_X(u)}{\varepsilon f_X(v)} = \frac{f_X(u)}{f_X(v)}$.

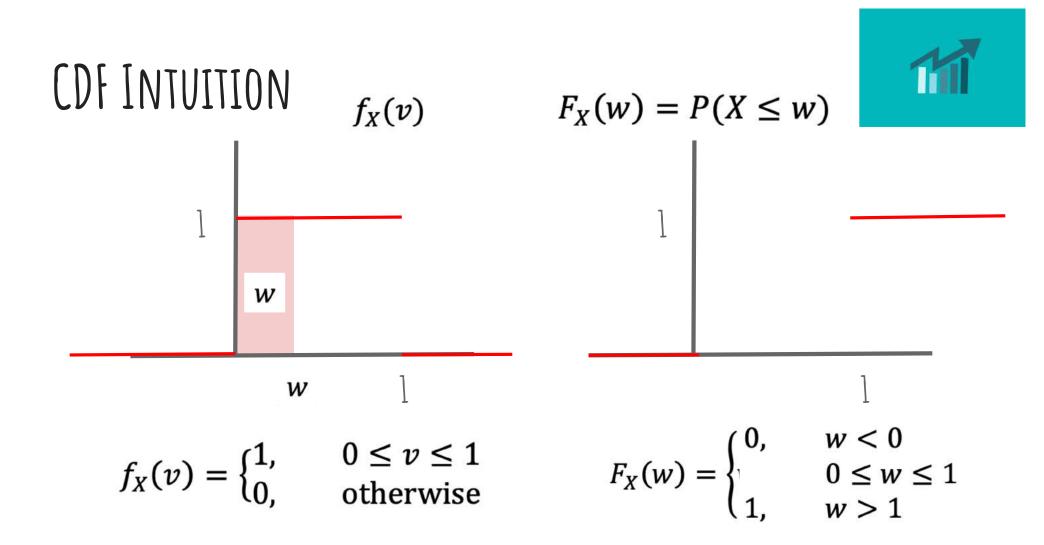
RANDOM PICTURE

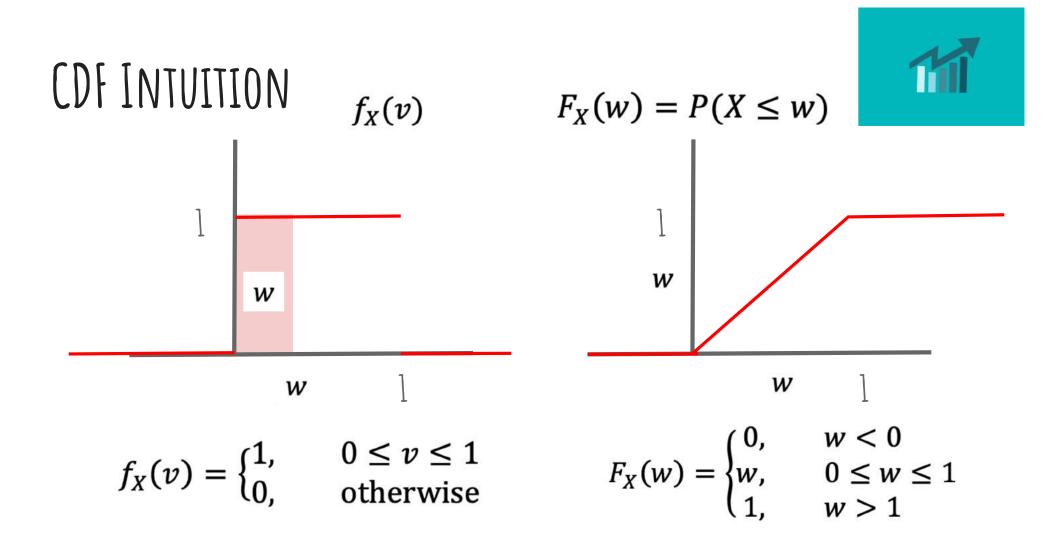




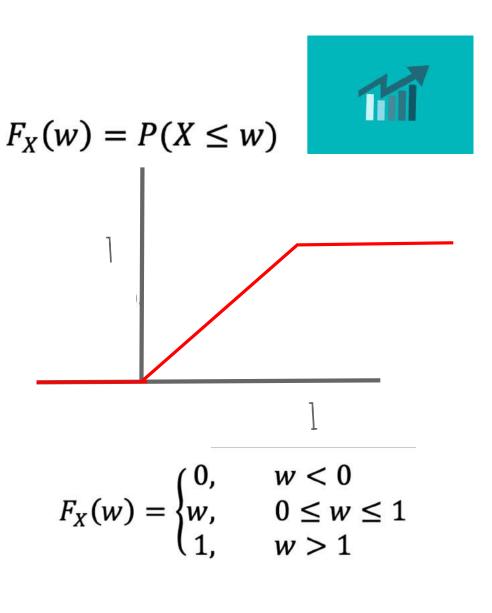


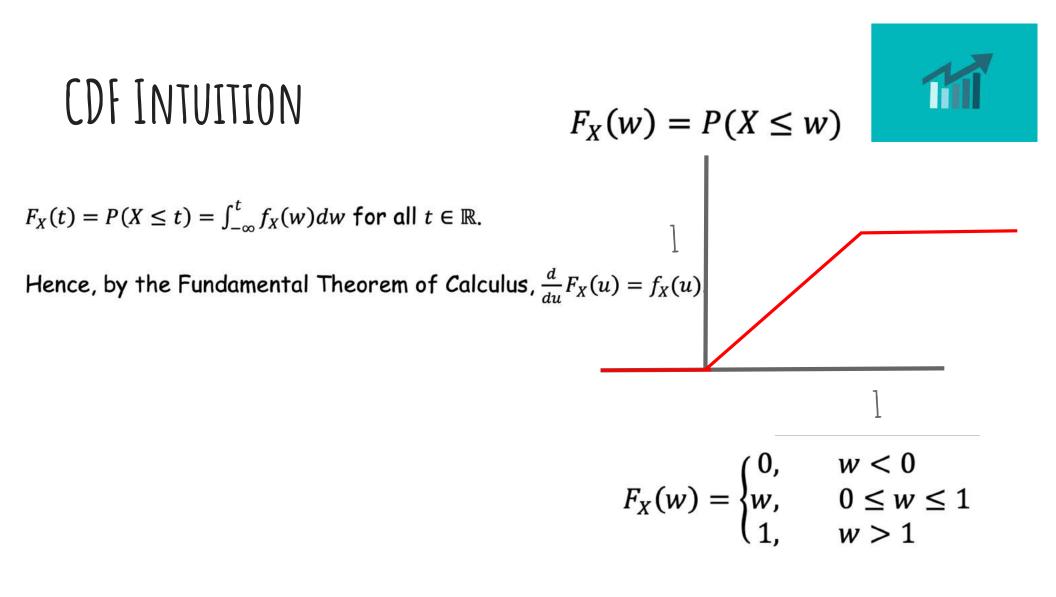


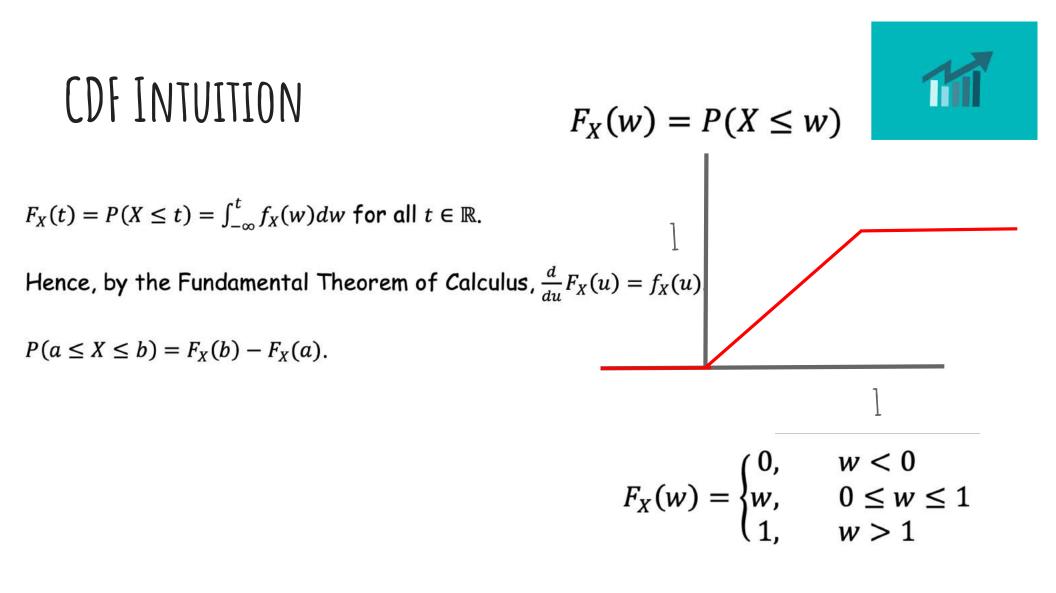


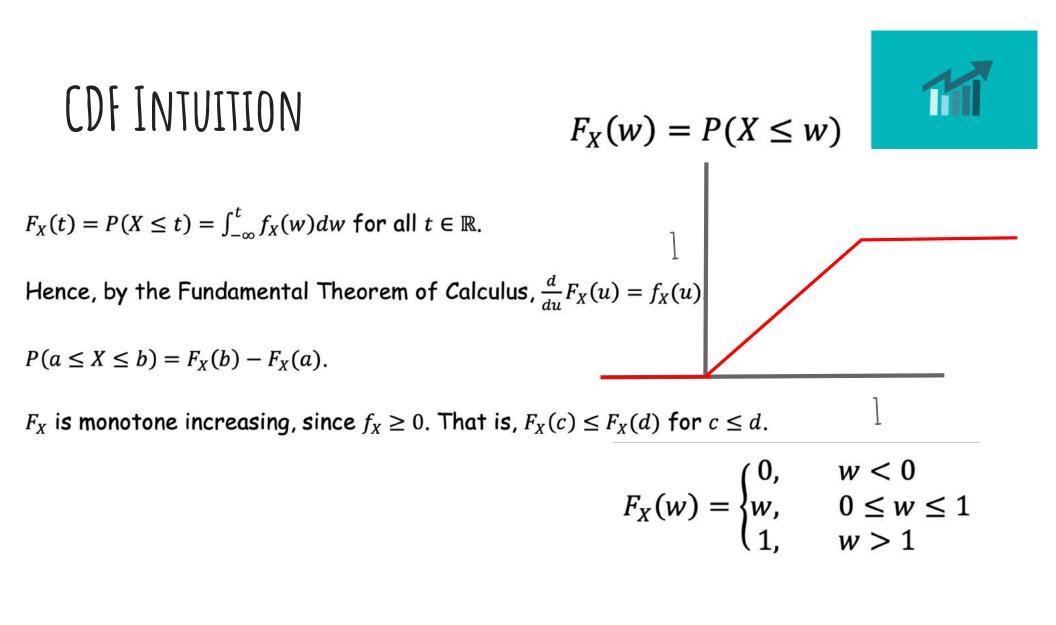


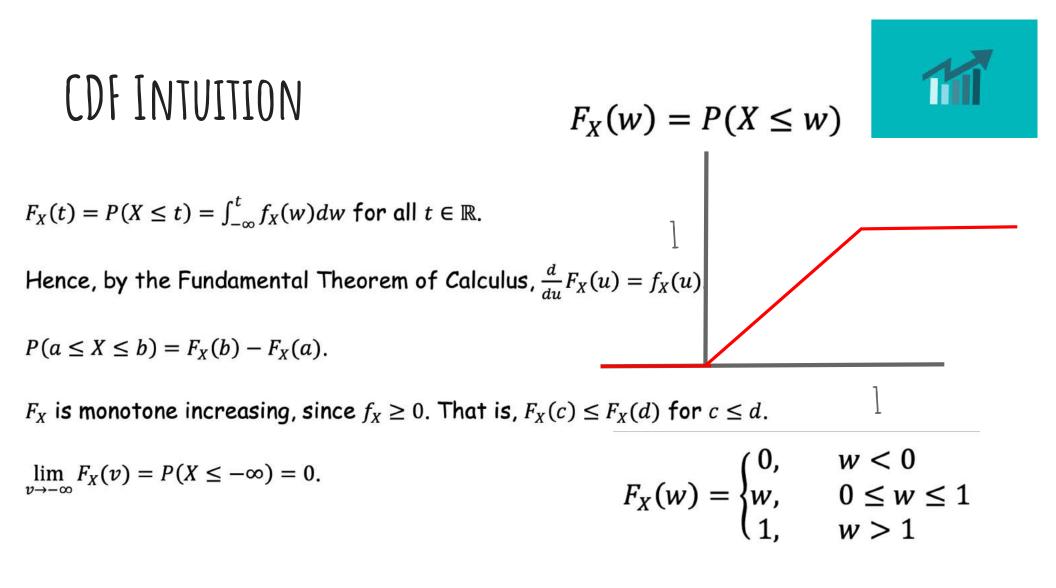
 $F_X(t) = P(X \le t) = \int_{-\infty}^t f_X(w) dw$ for all $t \in \mathbb{R}$.

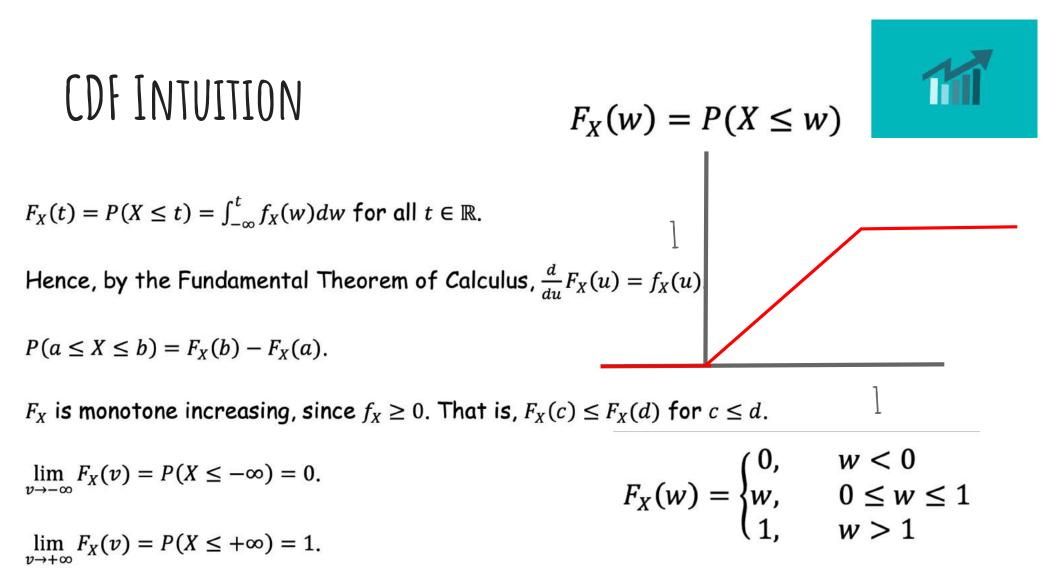












CUMULATIVE DISTRIBUTION FUNCTIONS (CDFS)

<u>Cumulative Distribution Function (CDF)</u>: Let X be a continuous rv (one whose range is typically an interval or union of intervals). The cumulative distribution function (CDF) of X is the function $F_X: \mathbb{R} \to \mathbb{R}$ such that

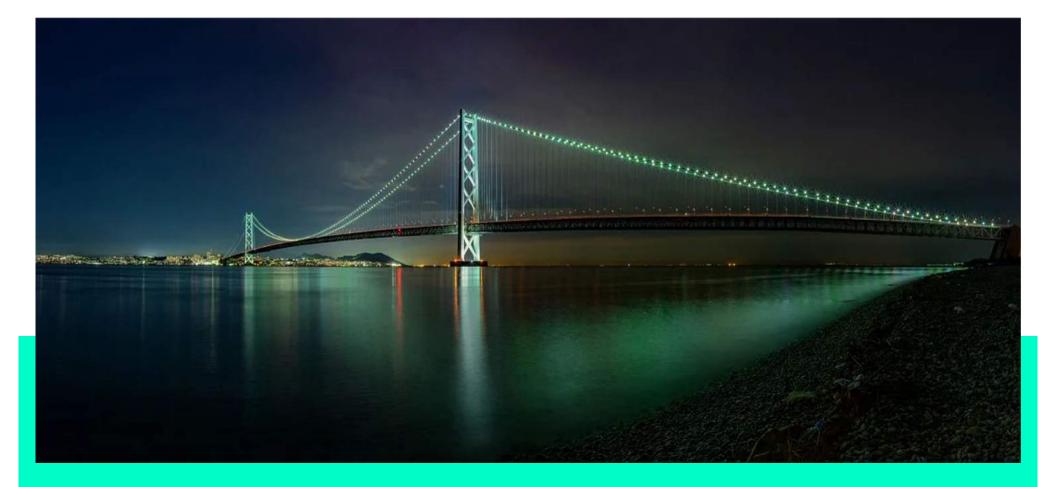
- $F_X(t) = P(X \le t) = \int_{-\infty}^t f_X(w) dw$ for all $t \in \mathbb{R}$.
- Hence, by the Fundamental Theorem of Calculus, $\frac{d}{du}F_X(u) = f_X(u)$.

•
$$P(a \le X \le b) = F_X(b) - F_X(a).$$

- F_X is monotone increasing, since $f_X \ge 0$. That is, $F_X(c) \le F_X(d)$ for $c \le d$.
- $\lim_{v\to-\infty}F_X(v)=P(X\leq-\infty)=0.$
- $\lim_{v\to+\infty} F_X(v) = P(X \le +\infty) = 1.$

FROM DISCRETE TO CONTINUOUS

	Discrete	Continuous
PMF/PDF	$p_X(x) = P(X = x)$	$f_X(x) \neq P(X = x) = 0$
CDF	$F_X(x) = \sum_{t \le x} p_X(t)$	$F_{X}(x) = \int_{-\infty}^{x} f_{X}(t) dt$
Normalization	$\sum_{x} p_X(x) = 1$	$\int_{-\infty}^{\infty} f_X(x) dx = 1$
Expectation	$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$



PROBABILITY 4.2 ZOO OF CONTINUOUS RVS

AGENDA

- THE (CONTINUOUS) UNIFORM RV
- THE EXPONENTIAL RV
- MEMORYLESSNESS

THE (CONTINUOUS) UNIFORM RV

<u>Uniform (Continuous) RV</u>: $X \sim Unif(a, b)$ where a < b are real numbers, if and only if X has the following pdf:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

X is equally likely to take on any value in [a, b].

THE UNIFORM (CONTINUOUS) RV

<u>Uniform (Continuous) RV</u>: $X \sim Unif(a, b)$ where a < b are real numbers, if and only if X has the following pdf:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

X is equally likely to take on any value in [a, b].

$$E[X] = \frac{a+b}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$

The cdf is

1

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

THE EXPONENTIAL PDF/CDF

Recall the Poisson Process with parameter $\lambda > 0$ has events happening at average rate of λ per unit of time forever. The exponential RV measures the time until the first occurrence of an event, so is a continuous RV with range $[0, \infty)$ (unlike the Poisson RV, which counts the number of occurrences in a unit of time, with range $\{0,1,2,...\}$.)

THE EXPONENTIAL PDF/CDF

Recall the Poisson Process with parameter $\lambda > 0$ has events happening at average rate of λ per unit of time forever. The exponential RV measures the time until the first occurrence of an event, so is a continuous RV with range $[0, \infty)$ (unlike the Poisson RV, which counts the number of occurrences in a unit of time, with range $\{0,1,2,...\}$.)

Let $Y \sim Exp(\lambda)$ be the time until the first event. We'll compute $F_Y(t)$ and $f_Y(t)$. Let $X(t) \sim Poi(\lambda t)$ be the # of events in the first t units of time, for $t \ge 0$.

THE EXPONENTIAL PDF/CDF

Recall the Poisson Process with parameter $\lambda > 0$ has events happening at average rate of λ per unit of time forever. The exponential RV measures the time until the first occurrence of an event, so is a continuous RV with range $[0, \infty)$ (unlike the Poisson RV, which counts the number of occurrences in a unit of time, with range $\{0,1,2,...\}$.)

Let $Y \sim Exp(\lambda)$ be the time until the first event. We'll compute $F_Y(t)$ and $f_Y(t)$. Let $X(t) \sim Poi(\lambda t)$ be the # of events in the first t units of time, for $t \ge 0$.

$$P(Y > t) = P(\text{no events in first } t \text{ units}) = P(X(t) = 0) = e^{-\lambda t} \frac{(\lambda t)^0}{0!} = e^{-\lambda t}$$

$$F_Y(t) = P(Y \le t) = 1 - P(Y > t) = 1 - e^{-\lambda t}$$

$$f_Y(t) = \frac{d}{dt}F_Y(t) = \lambda e^{-\lambda t}$$

THE EXPONENTIAL RV PROPERTIES

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx =$$

THE EXPONENTIAL RV PROPERTIES

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_{0}^{\infty} x^2 \cdot \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

$$Var(X) = E[X^2] - E[X]^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

THE EXPONENTIAL RV

Exponential RV: $X \sim Exp(\lambda)$, if and only if X has the following pdf:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

X is the waiting time until the first occurrence of an event in a Poisson process with parameter λ .

THE EXPONENTIAL RV

Exponential RV: $X \sim Exp(\lambda)$, if and only if X has the following pdf:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

X is the waiting time until the first occurrence of an event in a Poisson process with parameter λ .

$$E[X] = \frac{1}{\lambda}$$
 $Var(X) = \frac{1}{\lambda^2}$

The cdf is

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

RANDOM PICTURE

A random variable X is <u>memoryless</u> if for all $s, t \ge 0$,

P(X > s + t | X > s) = P(X > t)

A random variable X is <u>memoryless</u> if for all $s, t \ge 0$,

$$P(X > s + t \mid X > s) = P(X > t)$$

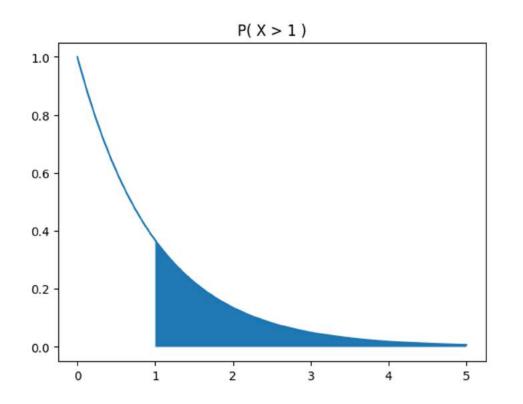
For example, let s = 7, t = 2. So P(X > 9 | X > 7) = P(X > 2). That is, given we've waited 7 minutes, the probability we wait at least 2 more, is the same as the probability we wait at least 2 more from the beginning.

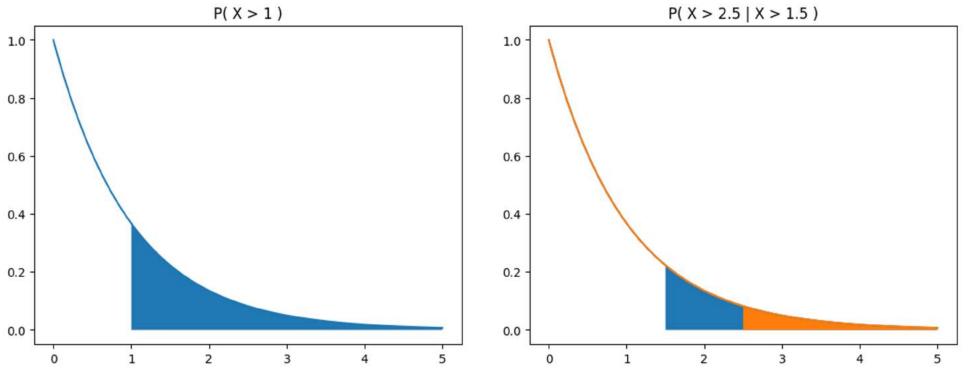
A random variable X is <u>memoryless</u> if for all $s, t \ge 0$,

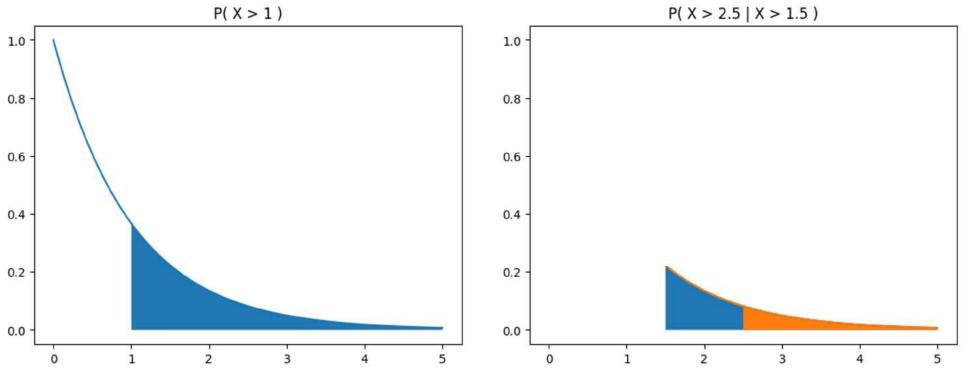
$$P(X > s + t \mid X > s) = P(X > t)$$

For example, let s = 7, t = 2. So P(X > 9 | X > 7) = P(X > 2). That is, given we've waited 7 minutes, the probability we wait at least 2 more, is the same as the probability we wait at least 2 more from the beginning.

The only memoryless RVs are the Geometric (discrete) and Exponential (continuous)!







MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If $X \sim Exp(\lambda)$ and $x \ge 0$, then recall

 $P(X > x) = 1 - F_X(x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$

MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If $X \sim Exp(\lambda)$ and $x \ge 0$, then recall

$$P(X > x) = 1 - F_X(x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$$

 $P(X > s + t \mid X > s) =$

MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If $X \sim Exp(\lambda)$ and $x \ge 0$, then recall

$$P(X > x) = 1 - F_X(x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$$

$$P(X > s + t | X > s) = \frac{P(X > s | X > s + t)P(X > s + t)}{P(X > s)}$$
$$= \frac{P(X > s + t)}{P(X > s)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}$$
$$= e^{-\lambda t}$$
$$= P(X > t)$$

THE GAMMA RV

<u>Gamma RV:</u> $X \sim Gamma(r, \lambda)$ if and only if X has the following pdf:

$$f_X(x) = \begin{cases} \frac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

X is the sum of r independent $Exp(\lambda)$ random variables.

