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POISSON RV EXAMPLE

Suppose Lookbook gets on average 120 new users per hour, and Quickgram
gets 180 new users per hour, independently. What is the probability that,
combined, less than 2 users sign up in the next minute?

Convert A's to the same unit of interest. For us, it's a minute.
X~Poi(2 users/min) Y~Poi(3 users/min)
Z=X+Y~Poi(2+3) = Poi(5)

59 51
P(Z < 2) =p:(0) +p(1) = e—sa + e-sF = 6e~> = 0.04
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random variables

Important Examples:

Uniform(a,b): P(X =) = 1 a+b 5 (b—a)b—a+2)

T b—at+1 T 277 12

Bernoulli(p): P(X=1)=p,P(X=0)=1-p u=p, o2=p(l-p)
Binomial(n,p) P(X = i) = (?)gf’(l —p)"*  W=np, c2=np(1-p)
Poisson(@):  p(x = i) = ¢ w=1, o2=2
Bin(n,p) = Poi(4) where A4 = np fixed, n — (and so p=A/n — 0)

Geometric(p) PX=K)=(1-p)<'p u=1/p,o0?=(1-p)p?
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k.1 CONTINUOUS RANDOM VARIABLES
BASICS




AGENDA

o PROBABLLITY DENSITY FUNCTIONS (PDFS)
o CUMULATIVE DISTRIBUTION FUNCTIONS (CDFS)
o [fOM DISCRETE TO CONTINUOUS






CDF INTUTTION Fy(w) = P(X < w) -
\/

0, w<o0

1, w>1

|



(DFINTUTTION .

1
| w |
0 w<0
1 0<v<i1i ’
fx(w) =1 L. Fy(w) = {w, o<w<l1
{O, otherwise 1 end



(DFINTUTTION .

w
v v
0 w<0
1, 0<v<1 '
fx () {0, otherwise W) {v; 1?V_>“1, =



PDY INTUITION fe(@) 20 forallz € B




PDY INTUITION @201

Lfo(t)dt =1



PDY INTUITION fe(@) 20 forallz € B

Lfo(t)dt =1

b
Pla<X<bh)= f fx(w)dw




PDY INTUITION fe@) 20 foralz € R

foofx(t)dt =1
b
Pla<X<bh)= j fx(w)dw

y
PR =y) =P <X<y) = [ fiwdw=0




PDE INTUH—ION fx(z) 20 forallze R
Lfo(t)dt =1
b
Pla<X<bh)= f fx(w)dw
y
PR =y) =P <X<y) = [ fiwdw=0

P(qu)zP(q—;—SXSq+%)




PDE INTUITION fu(z)> 0 forallz € R
Lo f:fx(t)dt=1

Pla<X<bh)= jbfx(w)dw
fx(q) ‘

y
PR =y) =P <X<y) = [ fiwdw=0

& €
PX~q)~P(a-5<X<q+3)=efx(a)




PDY INTUITION fe(2) 20 forallz € R

foofx(t)dt =1
P(X~u) —
P(X =v)

b
P(aSXSb)=j fx(w)dw
y
PR =y) =P <X<y) = [ fiwdw=0

& €
PX~q)~P(a-5<X<q+3)=efx(a)

P(X = u) _ efx(u) _ fx(w)
u v PX=v) efy(v) fx()




PROBABILITY DENSITY FUNCTIONS (PDFS)

Probability Density Function (PDF): Let X be a continuous rv (one whose
range is typically an interval or union of intervals). The probability density
function (PDF) of X is the function fy:R — R such that

e fyx(z) =20 forall z€R.

o [T fe(®dt=1.

e Pla<X<bh)= f:fx(w)dw.

e PX=y)=0foranyy€R.

e The probability that X is close to q is proportional to fx(q): P(X = q) =

P(a-S<x<q+3)~ef(q).

e Ratios of probabilities of being near points are maintained:

ef x(u) - fx)
efx(w) fx@)

P(X~u)
P(X=v) o







OOFINTUTTION .~ ,, -

|

|

0<v<l1
otherwise

@) ={;



(DFINTUTTION . Few) = P(X < w) -

1 |

w<0
Fy(w) =1 0wl
w>1

0<v<l1
otherwise

@) ={;



(DFINTUTTION . Few) = P(X < w) -

1 |

0, w<0
Fy(w) =1 0wl
w>1

0<v<l1
otherwise

@) ={;



(DFINTUTTION . Few) = P(X < w) -

| |

0 w<0
1 0<v<i1i )
fx(”)={' . Fy(w) =1 o<w<1
0, otherwise 1 end



(DFINTUTTION .

| |
w
w 1 1
0 w<0
1 0<v<i1i ’
fx(w) =1, L. Fy(w) =1 o<w<i1
{O, otherwise 1 end



(DFINTUTTION .

w
v v
0 w<0
1, 0<v<1 '
fx () {0, otherwise W) {v; 1?V_>“1, =



(DE INTUTTION

Fx(t) =P(X <t) = [ _fy(w)dw forall t € R.

Fx(w) =P(X <w) -
‘/

{O, w<o0

w, 0<w<(<l1l
1, w>1

Fx(w) =



CDF INTUITION FeW) = P(X < w)

Fx(t) =P(X <t) = [ _fy(w)dw forall t € R.

|

Hence, by the Fundamental Theorem of Calculus, %Fx(u) = Tol@)

0, w<0
Fx(W)= W, O<w<l
1, w>1



CDF INTUITION Fy(w) = P(X < w)

Fx(t) =P(X < t)= [ _fy(w)dw for all t € R.

|

Hence, by the Fundamental Theorem of Calculus, %Fx(u) = Tol@)

P(a < X < b) = Fx(b) — Fx(a).

0, w<0
Fx(W)= W, O<w<l
1, w>1



CDF INTUITION Fy(w) = P(X < w)

Fx(t) =P(X < t)= [ _fy(w)dw for all t € R.

|

Hence, by the Fundamental Theorem of Calculus, %Fx(u) = Tol@)

P(a < X < b) = Fx(b) — Fx(a).

Fy is monotone increasing, since fy > 0. That is, Fx(c) < Fx(d) for c <d. 1

0, w<0
Fx(W)z W, O<w<l
1, w>1



CDF INTUITION Fy(w) = P(X < w)

Fx(t) =P(X < t)= [ _fy(w)dw for all t € R.

|

Hence, by the Fundamental Theorem of Calculus, %Fx(u) = Tol@)

P(a < X < b) = Fx(b) — Fx(a).

Fy is monotone increasing, since fy > 0. That is, Fx(c) < Fx(d) for c <d. |

. 0 w<0
lim Fy(v) =P(X < —) =0. !
vo—oo X Fxy(w) =i{w, o<w<1

1, w>1



CDF INTUITION Fy(w) = P(X < w)

Fx(t) =P(X < t)= [ _fy(w)dw for all t € R.

|

Hence, by the Fundamental Theorem of Calculus, %Fx(u) = Tol@)

P(a < X < b) = Fx(b) — Fx(a).

Fy is monotone increasing, since fy > 0. That is, Fx(c) < Fx(d) for c <d. |
lim Fy(v) = P(X < —) = 0. 0, w<0
T Fx(w) = 3w, 0O<w<l1l

lim Fy(v) = P(X < ) = 1. 1, w>1

v—o+00



CUMULATIVE DISTRIBUTION FUNCTIONS (CDFS)

Cumulative Distribution Function (CDF): Let X be a continuous rv (one
whose range is typically an interval or union of intervals). The cumulative
distribution function (CDF) of X is the function Fyx: R — R such that

o |[Fy(®)=PX <t)=["_fy(w)dw forall t € R.

e (Hence, by the Fundamental Theorem of Calculus, %Fx(u) = fx(u).
e P(a<X<b)=Fx(b)— Fx(a).

e Fy is monotone increasing, since fy = 0. That is, Fyx(c) < Fx(d) for c <d.
e lim Fy(v) =P(X < —) =0.

V—>—00

® lirP Fx(v) =P(X < +x) =1.
V—>+00







FROM DISCRETE T0 CONTINUOUS

Discrete Continuous
PMF/PDF px(z) = P(X = z) fx(w) # P(X = z) =0
CDF Fx (z) = Zt<mPX() =)o x (t
Normalization | }__px(z) =1 f fX da: = 1
Expectation | E[g(X)] = }_, g9(z)px(z) IE[g )| = f g9(z) fx (z) dz







PROBABILITY
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AGENDA
o THE (CONTINUOUS) UNTFORM RV

o [HELIPONENTIAL RY
® [MEMORVLESINESS




THE (CONTINUOUS) UNIFORM RV

Uniform (Continuous) RV: X~Unif (a,b) where a < b are real numbers, if and
only if X has the following pdf:

x € [a,b]

1
fx(x) = {b —a’

0, otherwise

X is equally likely to take on any value in [a, b].



THE UNTFORM (CONTINUOUS) RV

Uniform (Continuous) RV: X~Unif (a,b) where a < b are real numbers, if and
only if X has the following pdf:

x € [a,b]

1
fx(x) = {b —a’

0, otherwise

X is equally likely to take on any value in [a, b].

N2
E[X] =a—;b Var(x) = & 12“)

The cdf is

0, x<a
X—a

1, X>Db



THE EXPONENTIAL PDE/CDE

Recall the Poisson Process with parameter 1 > 0 has events happening at average rate
of A per unit of time forever. The exponential RV measures the time until the first
occurrence of an event, so is a continuous RV with range [0, «) (unlike the Poisson RV,
which counts the number of occurrences in a unit of time, with range {0,1,2, ...}.)




THE EXPONENTIAL PDE/CDE

Recall the Poisson Process with parameter 1 > 0 has events happening at average rate
of A per unit of time forever. The exponential RV measures the time until the first
occurrence of an event, so is a continuous RV with range [0, «) (unlike the Poisson RV,
which counts the number of occurrences in a unit of time, with range {0,1,2, ...}.)

Let Y~Exp(1) be the time until the first event. We'll compute Fy(t) and fy (t).
Let X(t)~Poi(At) be the # of events in the first t units of time, for t > 0.



THE EXPONENTIAL PDE/CDE

Recall the Poisson Process with parameter 1 > 0 has events happening at average rate
of A per unit of time forever. The exponential RV measures the time until the first
occurrence of an event, so is a continuous RV with range [0, ) (unlike the Poisson RV,
which counts the number of occurrences in a unit of time, with range {0,1,2, ...}.)

Let Y~Exp(1) be the time until the first event. We'll compute Fy(t) and fy (t).
Let X(t)~Poi(At) be the # of events in the first t units of time, for t > 0.

(At)°
or

P(Y > t) = P(no events in first t units) = P(X(t) = 0) = e g~

FF@)=PY <t)=1-P¥Y>t)=1—-eH

d
fo() = 2 Fo(6) = 2™



THE EXPONENTIAL RV PROPERTLES

ElX = | " e ()dx =



THE EXPONENTIAL RV PROPERTLES

1

E[X] = fooxfx(x)dx = ij-/le_’b‘dx = 7
s .

00 00 2
st = [ rpcerie = [ -de-rvas =2
- :

2
1
Var(X) = E[X?] — E[X]? = /12—2— (/11) =



THE EXPONENTIAL RV

Exponential RV: X~Exp(4), if and only if X has the following pdf:

_(Ae™*, x>0
fx(x) = { 0, otherwise

X is the waiting time until the first occurrence of an event in a Poisson
process with parameter A.



THE EXPONENTIAL RV

Exponential RV: X~Exp(4), if and only if X has the following pdf:

_(Ae™*, x>0
fx(x) = { 0, otherwise

X is the waiting time until the first occurrence of an event in a Poisson
process with parameter A.

1 1
E[X] = : Var(X) = =z
The cdf is
_1—-e™, x>0
Fy(x) = { 0, otherwise




RANDOM PICTURE




MEMORYLESSNESS (INTUITION)

A random variable X is memoryless if forall s,t > 0,

PX>s+t|X>s)=PX>t)

&a
_@%

Z



MEMORYLESSNESS (INTUITION) Q@,".f '

A random variable X is memoryless if forall s,t > 0,

PX>s+t|X>s)=PX>t)

For example, let s =7,t =2. So P(X > 9|X > 7) = P(X > 2). That is, given we've waited
7 minutes, the probability we wait at least 2 more, is the same as the probability we
wait at least 2 more from the beginning.



MEMORYLESSNESS (INTUITION)

A random variable X is memoryless if forall s,t > 0,

PX>s+t|X>s)=PX>t)
For example, let s =7,t =2. So P(X > 9|X > 7) = P(X > 2). That is, given we've waited
7 minutes, the probability we wait at least 2 more, is the same as the probability we

wait at least 2 more from the beginning.

The only memoryless RVs are the Geometric (discrete) and Exponential (continuous)!



MEMORYLESSNESS (INTUITION)

P(X>1)

Z

& (7)
=P



MEMORYLESSNESS (INTUITION)

P(X>1)




MEMORYLESSNESS (INTUITION)

P(X>1)




MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If X~Exp(1) and x = 0, then recall

PX>x)=1-Fy(x)=1-(1—-e*) =e¢

—-Ax

Z

CF
= s



MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If X~Exp(1) and x = 0, then recall

PX>x)=1-Fy(x)=1-(1—-e*) =e¢

PX>s+t|X>s5)=

—-Ax

Z

CF
= s



MEMORYLESSNESS OF EXPONENTIAL (PROOF)

If X~Exp(1) and x = 0, then recall

PX>x)=1-Fy(x)=1-(1—-e™*) =X

PX>s|X>s+t)P(X >s+1t)

&a

PX>s+t|X>s5)= P(X > 3)

_P(X>s+t)

P(X > s)
o —Als+t)

e —As
= oAt

=P(X>1t)

Y

|
A

=) -3



THE GAMMA RV

Gamma RV: X~Gamma(r,A) if and only if X has the following pdf:

AT
r—1_,-1x
) =g=mi> © » ==0
0, otherwise

X is the sum of r independent Exp(4) random variables.







