

a zoo of (discrete) random variables (cont)

(1,p) $X: \mathcal{N} \to \mathbb{R}$ Mx ER (Ix, px) The point. $\sum_{x \in \mathcal{J}_{x}} P_{x}(x) = 1$ Px(x) = 0

An experiment results in "Success" or "Failure" X is an *indicator random variable* (I = success, 0 = failure) P(X=I) = p and P(X=0) = I-pX is called a *Bernoulli* random variable: X ~ Ber(p) $E[X] = E[X^2] = p$ $Var(X) = E[X^2] - (E[X])^2 = p - p^2 = p(I-p)$

Examples: coin flip random binary digit whether a disk drive crashed

Jacob (aka James, Jacques) Bernoulli, 1654 – 1705

Johann I

(1667-1748)

Duniel

Johann III Ja (1746-1807) (174

1687-1759) (1695-1726) (1700-1782)

Nikolau

(1662-1716)

Nikolaus I

Consider n independent random variables $Y_i \sim Ber(p)$ X = $\Sigma_i Y_i$ is the number of successes in n trials X is a *Binomial* random variable: X ~ Bin(n,p)

Examples

- # of heads in n coin flips
- # of I's in a randomly generated length n bit string
- # of disk drive crashes in a 1000 computer cluster
- # bit errors in file written to disk
- # of typos in a book
- # of elements in particular bucket of large hash table
- # of server crashes per day in giant data center

mean, variance of the binomial (II)

If
$$Y_1, Y_2, \dots, Y_n \sim Ber(p)$$
 and independent,
then $X = \sum_{i=1}^n Y_i \sim Bin(n, p)$.

$$E[X] = np$$

$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E\left[Y_i\right] = nE[Y_1] = np$$

$$Var[X] = np(1-p)$$

$$Var[X] = Var\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} Var\left[Y_i\right] = nVar[Y_1] = np(1-p)$$

Poisson motivation

$$\frac{V}{(X=1)} = \lim_{x \to \infty} \frac{P(Y=1)}{P(X=1)} = \lim_{x \to \infty} \frac{P(Y=1)}{P(Y=1)} = \lim_{x \to \infty} \frac{P(Y=1)}{P(Y=1)} = \lim_{x \to \infty} \frac{P(Y=1)}{P(Y=1)} = \frac{P(Y=1)}{$$

$$= n \cdot \frac{2}{n} (e^{n})$$

$$= 3 \cdot e^{-3} (e^{n})$$

$$= 3 \cdot e^{-3} (1)$$

$$= 3 \cdot e^{-3} (1)$$

$$\Pr(X=i) = e^{-3} \frac{3}{1!} \in i^{-1} i^{-1} e^{-1}$$

Poisson random variables

Suppose "events" happen, independently, at an average rate of λ per unit time. Let X be the actual number of events happening in a given time unit. Then X is a Poisson r.v. with parameter λ (denoted X ~ Poi(λ)) and has distribution (PMF):

Siméon Poisson, 1781-1840

Examples:

of alpha particles emitted by a lump of radium in 1 sec.

of traffic accidents in Seattle in one year

of babies born in a day at UW Med center

of visitors to my web page today

 $P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$

poisson random variables

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

poisson random variables X is a Poisson r.v. with parameter λ if it has PMF: i=0,1)a, $P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$ 21 $=e^{-}e^{-}=1$.\ ;\

X is a Poisson r.v. with parameter λ if it has PMF:

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Is it a valid distribution? Recall Taylor series:

$$e^{\lambda} = \frac{\lambda^{0}}{0!} + \frac{\lambda^{1}}{1!} + \dots = \sum_{0 \le i} \frac{\lambda^{i}}{i!}$$

So
$$\sum_{0 \le i} P(X = i) = \sum_{0 \le i} e^{-\lambda} \frac{\lambda^{i}}{i!} = e^{-\lambda} \sum_{0 \le i} \frac{\lambda^{i}}{i!} = e^{-\lambda} e^{\lambda} = 1$$

$$E(X) = ?$$

$$\sum_{0 \le i} P(X = i) = \sum_{0 \le i} e^{-\lambda} \frac{\lambda^{i}}{i!} = e^{-\lambda} \sum_{0 \le i} \frac{\lambda^{i}}{i!} = e^{-\lambda} e^{\lambda} = 1$$

$$\sum_{0 \le i} P(X = i) = \sum_{0 \le i} e^{-\lambda} \frac{\lambda^{i}}{i!} = e^{-\lambda} \sum_{0 \le i} \frac{\lambda^{i}}{i!} = e^{-\lambda} e^{\lambda} = 1$$

expected value of poisson r.v.s

Poisson approximates binomial when n is large, p is small, and $\lambda = np$ is "moderate"

Different interpretations of "moderate," e.g. n > 20 and p < 0.05n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$ $prove when the prove when the poisson (<math>\lambda = np$) binomial \rightarrow poisson in the limit

 $X \sim Binomial(n,p)$ $P(X=i) = \binom{n}{i} p^i (1-p)^{n-i}$ $= \frac{n!}{i!(n-i)!} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}, \text{ where } \lambda = pn$ $\frac{n(n-1)\cdots(n-i+1)}{n^i} \frac{\lambda^i}{i!} \frac{(1-\lambda/n)^n}{(1-\lambda/n)^i}$ $= \frac{n(n-1)\cdots(n-i+1)}{(n-\lambda)^i} \frac{\lambda^i}{i!} (1-\lambda/n)^n$ $\cdot \frac{\lambda^i}{d!} \cdot e^{-\lambda}$ 1 \approx

I.e., Binomial \approx Poisson for large n, small p, moderate i, λ . Handy: Poisson has only 1 parameter—the expected # of successes

sending data on a network

Consider sending bit string over a network # or provide bits Send bit string of length $n = 10^4$ $\sim Bm(10^4, 10^4)$ Probability of (independent) bit corruption is $p = 10^{-6}$ $\lambda \sim \text{Poi}(\lambda = 10^{4} \cdot 10^{-6} = 0.01)$ What is probability that message arrives uncorrupted? $P(X = 0) = e^{-\lambda} \frac{\lambda^0}{0!} = e^{-0.01} \frac{0.01^0}{0!} \approx 0.990049834$ Using Y ~ Bin(10^4 , 10^{-6}): $P(Y=0) \approx 0.990049829$

I.e., Poisson approximation (here) is accurate to ~5 parts per billion

k

14

expectation and variance of a poisson Bin(n,p) <> Poi(2) Recall: if $Y \sim Bin(n,p)$, then: E[Y] = pnVar[Y] = np(I-p)P= x And if X ~ Poi(λ) where $\lambda = np$ ($n \rightarrow \infty, p \rightarrow 0$) then $\begin{array}{l} \mathsf{E}[\mathsf{X}] &= \lambda \\ \mathsf{Var}[\mathsf{X}] &= \lambda \\ \approx \lambda(\mathsf{I} \cdot \lambda/\mathsf{n}) \\ = \mathsf{np}(\mathsf{I} \cdot \mathsf{p}) \\ = \mathsf{Var}[\mathsf{Y}] \end{array}$

Sum of independent Poissons is Poisson

$$X \sim Poi(n_i)$$
 $Y \sim Poi(n_i)$
 $X + Y \sim Poi(n_i)$ $Y \sim Poi(n_i)$
 $X + Y \sim Poi(n_i)$ $Y \sim Poi(n_i)$
 $X + Y \sim Poi(n_i)$ $Y \sim Poi(n$

Sum of independent Poissons is Poisson
Law g total prob
Parthon:
$$\frac{1}{2} \frac{1}{2} = 0$$
; $\frac{1}{2} \frac{1}{2} = \frac{1}{2}$; $\frac{1}{2} \frac{1}{2} = \frac{1}{2}$; $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

random variables

Important Examples:

Uniform(a,b):
$$P(X = i) = \frac{1}{b-a+1}$$
 $\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)(b-a+2)}{12}$
Bernoulli(p): $P(X = 1) = p, P(X = 0) = 1-p$ $\mu = p, \sigma^2 = p(1-p)$
Binomial(n,p) $P(X = i) = {n \choose i} p^i (1-p)^{n-i}$ $\mu = np, \sigma^2 = np(1-p)$
Poisson(λ): $P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$ $\mu = \lambda, \sigma^2 = \lambda$
 $Bin(n,p) \approx Poi(\lambda)$ where $\lambda = np$ fixed, $n \rightarrow \infty$ (and so $p = \lambda/n \rightarrow 0$)
Geometric(p) $P(X = k) = (1-p)^{k-1}p$ $\mu = 1/p, \sigma^2 = (1-p)/p^2$

. .