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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed
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Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Examples
# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

 # bit errors in file written to disk  
 # of typos in a book
 # of elements in particular bucket of large hash table  
 # of server crashes per day in giant data center
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mean, variance of  the binomial (II)
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Poisson motivation
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Model events that occur in an hour
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Siméon Poisson, 1781-1840

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be  
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:

# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year

# of babies born in a day at UW Med center
# of visitors to my web page today
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poisson  random variables
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X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

poisson random variables

!9
n.EEimtsin II

unityAnd



expected value of  poisson r.v.s
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j = i-1

(Var[X] = λ, too; proof similar) 

As expected, given definition 
in terms of “average rate λ”
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binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Different interpretations of “moderate,” e.g.
n > 20 and p < 0.05
n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as  
n → ∞ (equivalently, p → 0) while holding np =  λ
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X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.
Handy: Poisson has only 1 parameter–the expected # of successes

binomial → poisson in the limit
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sending data on a network

Consider sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829

I.e., Poisson approximation (here) is accurate to ~5 parts per billion
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binomial vs poisson
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expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]
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Sum of  independent Poissons is Poisson
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Sum of  independent Poissons is Poisson
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Sum of  independent Poissons is Poisson
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random variables

Important Examples:

Uniform(a,b): 

Bernoulli(p): P(X = 1) = p, P(X = 0) = 1-p  μ = p,   σ2= p(1-p)

Binomial(n,p)  μ = np, σ2 = np(1-p)

Poisson(λ):             μ = λ,   σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric(p)       P(X = k) = (1-p)k-1p μ = 1/p, σ2 = (1-p)/p2
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