BLOOM FILTERS

ANNA KARLIN Most slides by Shreya Jayaraman, Luxi Wang, Alex Tsun

BLOOM FILTERS: MOTIVATION

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting **a lot of time and space** doing lookups for items that aren't even present.

Examples:

- Google Chrome: wants to warn you if you're trying to access a malicious URL. Keep hash table of malicious URLs.
- Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

BLOOM FILTERS: MOTIVATION

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Typical implementation: only 8 bits per element!

BLOOM FILTERS

- Stores information about a set of elements.
- Supports two operations:
 - 1. add(x) adds x to bloom filter
 - 2. contains(x) returns true if x in bloom filter,
 - otherwise returns false
 - a. If return false, **definitely** not in bloom filter.
 - b. If return true, possibly in the structure
 (some false positives).

bloom filter t with m = 5 that uses k = 3 hash functions

function INITIALIZE(k,m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0's

Index →	Θ	1	2	3	4
t1	Θ	Θ	Θ	Θ	0
t ₂	Θ	Θ	Θ	Θ	0
t ₃	Θ	Θ	Θ	Θ	0

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for $i = 1,, k$: do
$t_i[h_i(x)] = 1$

add("thisisavirus.com")

- h_1 ("thisisavirus.com") $\rightarrow 2$
- $h_2("thisisavirus.com") \rightarrow 1$
- h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
tı	Θ	Θ	1	Θ	0
t ₂	Θ	1	Θ	Θ	0
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

function Contains(x)	
return $t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$	

True

True

True

contains("thisisavirus.com")

- h_1 ("thisisavirus.com") $\rightarrow 2$
- h_2 ("thisisavirus.com") $\rightarrow 1$
- h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	0
t ₂	Θ	1	Θ	Θ	0
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

func	tion CON			r)] 1 ^ · · ·	$\cdot \wedge t_k[h_k(x)] =$	- 1	± .	"thisisa			
		True			True	- 1	2 \	"thisisa" "thisisa			
	Since	all	condition	s satisfi	ed, retur	ns Tru	e (d	correctly)		
			Index →	Θ	1	2		3		1	
			tı	Θ	Θ	1		Θ	(Ð	
			t ₂	Θ	1	Θ		Θ	(Ð	
			t ₃	0	Θ	Θ		Θ	1	L	

contains("thisisavirus.com")

bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

function CONTAINS(X)

True

return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$$

True

1

0

t,

 t_3

$$h_1("verynormalsite.com") \rightarrow 2$$

$$h_2("verynormalsite.com") \rightarrow 0$$

$$h_3("verynormalsite.com") \rightarrow 4$$

0

1

True		ue	True				
Since all	condition	s satisfi	ed, retur	ns True (incorrect	ly)	
	Index →	Θ	1	2	3	4	
	t1	Θ	1	1	Θ	0	

1

0

0

0

0

0

True

BLOOM FILTERS: SUMMARY

- An empty bloom filter is an empty k x m bit array with all values initialized to zeros
 - \circ k = number of hash functions
 - \circ m = size of each array in the bloom filter
- add(x) runs in O(k) time
- contains(x) runs in O(k) time
- requires O(km) space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter

BLOOM FILTERS: APPLICATION

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

FALSE POSITIVE PROBABILITY

COMPARISON WITH HASH TABLES - SPACE

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with k=8 and m = 10,000,000.

Hash Table		

Bloom	Filter

COMPARISON WITH HASH TABLES - TIME

- Say avg user visits 100,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
- Suppose the false positive rate is 2%

Hash T	able		

Bloom	Filter

BLOOM FILTERS: MANY APPLICATIONS

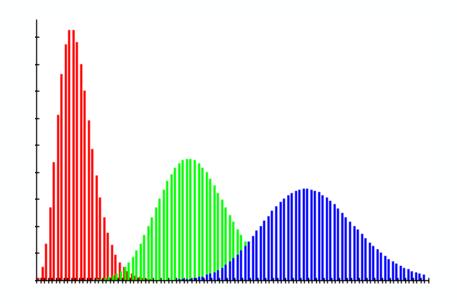
- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce the disk lookups for non-existent rows and columns
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

BLOOM FILTERS TYPICAL EXAMPLE...

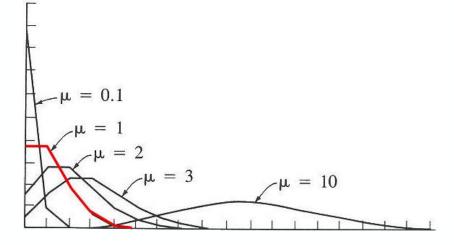
of randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

• You'll be implementing Bloom filters on pset 4. Enjoy!



a zoo of (discrete) random variables



A discrete random variable X equally likely to take any (integer) value between integers *a* and *b*, inclusive, is *uniform*.

Notation:

Probability mass function:

Mean:

Variance:

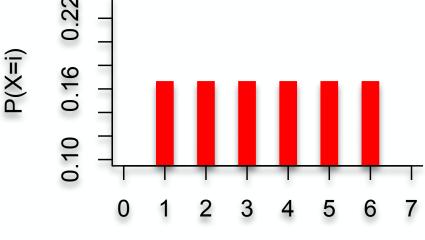
A discrete random variable X equally likely to take any (integer) value between integers *a* and *b*, inclusive, is *uniform*.

Notation: $X \sim Unif(a,b)$ Probability: $P(X=i) = \frac{1}{b-a+1}$ Mean, Variance: $E[X] = \frac{a+b}{2}$, $Var[X] = \frac{(b-a)(b-a+2)}{12}$ Example: value shown on one \mathbb{N} |

roll of a fair die is Unif(1,6):

$$P(X=i) = 1/6$$

 $E[X] = 7/2$
 $Var[X] = 35/12$



An experiment results in "Success" or "Failure" X is an *indicator random variable* (I = success, 0 = failure) P(X=I) = p and P(X=0) = I-p X is called a *Bernoulli* random variable: X ~ Ber(p)

Mean:

Variance:

An experiment results in "Success" or "Failure" X is an *indicator random variable* (I = success, 0 = failure) P(X=I) = p and P(X=0) = I-pX is called a *Bernoulli* random variable: X ~ Ber(p) $E[X] = E[X^2] = p$ $Var(X) = E[X^2] - (E[X])^2 = p - p^2 = p(I-p)$

Examples: coin flip random binary digit whether a disk drive crashed

Jacob (aka James, Jacques) Bernoulli, 1654 – 1705

Johann I

(1667-1748)

Daniel

Johann II

(1710 - 1790)

Johann III Jacob II (1746-1807) (1759-178

Nikolaus

(1662-1716

Nikolaus I

Nikolaus II

(1687-1759) (1695-1726) (1700-1782)

Consider n independent random variables $Y_i \sim Ber(p)$ $X = \Sigma_i Y_i$ is the number of successes in n trials X is a *Binomial* random variable: $X \sim Bin(n,p)$

Examples

- # of heads in n coin flips
- # of I's in a randomly generated length n bit string
- # of disk drive crashes in a 1000 computer cluster
- # bit errors in file written to disk
- # of typos in a book
- # of elements in particular bucket of large hash table
- # of server crashes per day in giant data center

Consider n independent random variables $Y_i \sim Ber(p)$ $X = \Sigma_i Y_i$ is the number of successes in n trials X is a *Binomial* random variable: $X \sim Bin(n,p)$

Probability mass function:

Mean:

Variance:

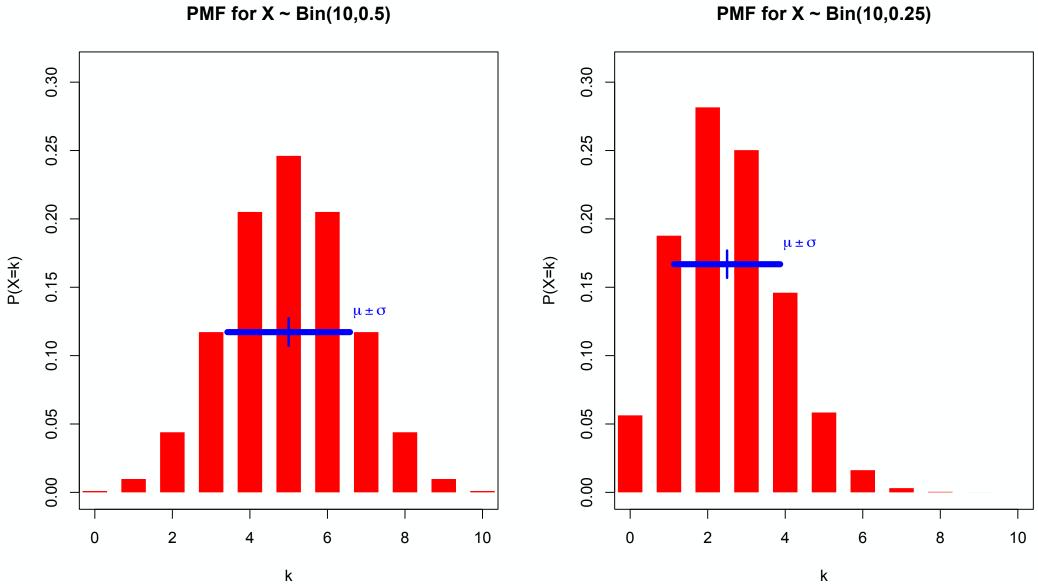
mean, variance of the binomial (II)

If $Y_1, Y_2, \ldots, Y_n \sim Ber(p)$ and independent, then $X = \sum_{i=1}^n Y_i \sim Bin(n, p)$.

$$E[X] = np$$
$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E[Y_i] = nE[Y_1] = np$$

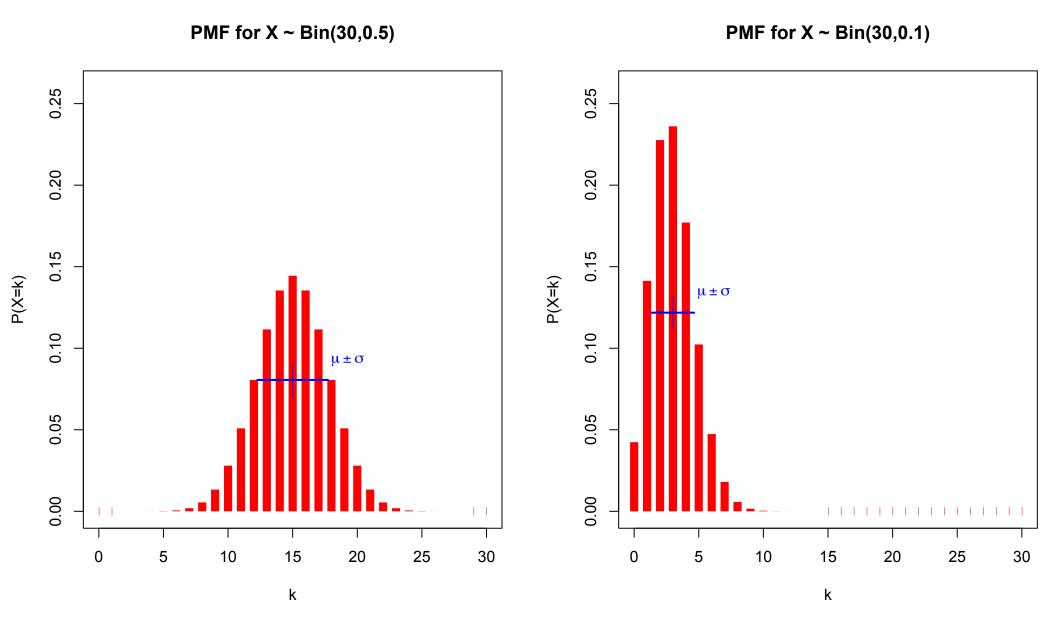
$$\begin{aligned} & \mathsf{Var}[X] = np(1-p) \\ & \mathsf{Var}[X] = \mathsf{Var}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathsf{Var}\left[Y_i\right] = n\mathsf{Var}[Y_1] = np(1-p) \end{aligned}$$

binomial pmfs



PMF for X ~ Bin(10,0.25)

binomial pmfs



10

Sending a bit string over the network n = 4 bits sent, each corrupted with probability 0.1 X = # of corrupted bits, X ~ Bin(4, 0.1)

In real networks, large bit strings (length n $\approx 10^4$) Corruption probability is very small: p $\approx 10^{-6}$ X ~ Bin(10⁴, 10⁻⁶) is unwieldy to compute

Extreme n and p values arise in many cases

bit errors in file written to disk

of typos in a book

of elements in particular bucket of large hash table

of server crashes per day in giant data center

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e.,

$$X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = 1$$

Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head Number of blind guesses on SAT until I get one right Number of darts thrown until you hit a bullseye Number of random probes into hash table until empty slot Number of wild guesses at a password until you hit it

Probability mass function:

Mean:

Variance:

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e.,

$$X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = I$$

Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head Number of blind guesses on SAT until I get one right Number of darts thrown until you hit a bullseye Number of random probes into hash table until empty slot Number of wild guesses at a password until you hit it

 $P(Y=k) = (I-p)^{k-1}p;$

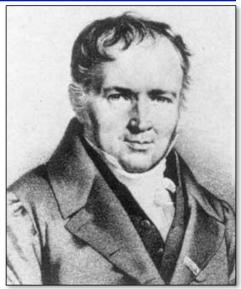
Mean I/p;

Variance (I-p)/p²

Poisson motivation

Poisson random variables

Suppose "events" happen, independently, at an *average* rate of λ per unit time. Let X be the *actual* number of events happening in a given time unit. Then X is a *Poisson* r.v. *with parameter* λ (denoted X ~ Poi(λ)) and has distribution (PMF):



Siméon Poisson, 1781-1840

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Examples:

of alpha particles emitted by a lump of radium in 1 sec.

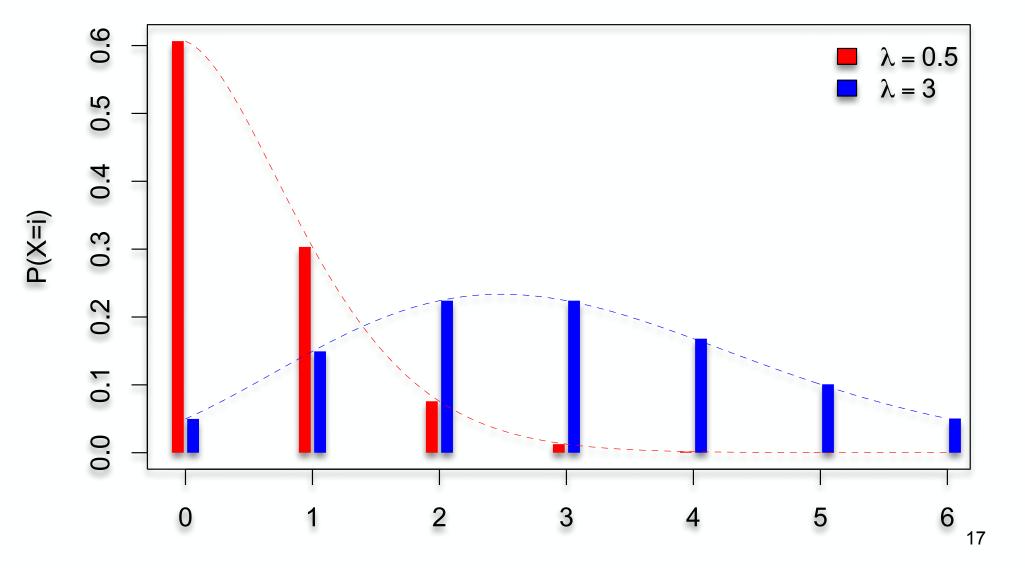
of traffic accidents in Seattle in one year

of babies born in a day at UW Med center

of visitors to my web page today

poisson random variables

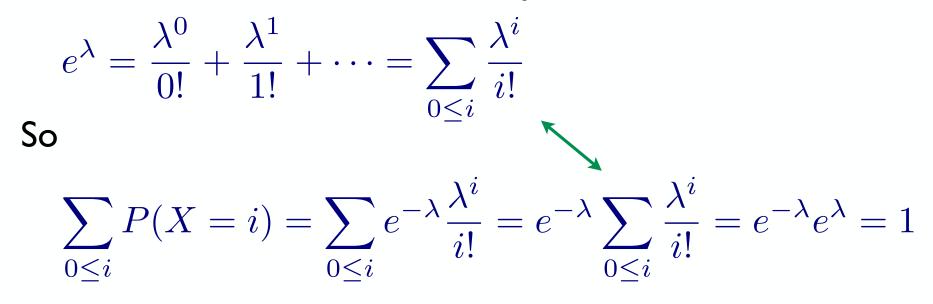
$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}$$



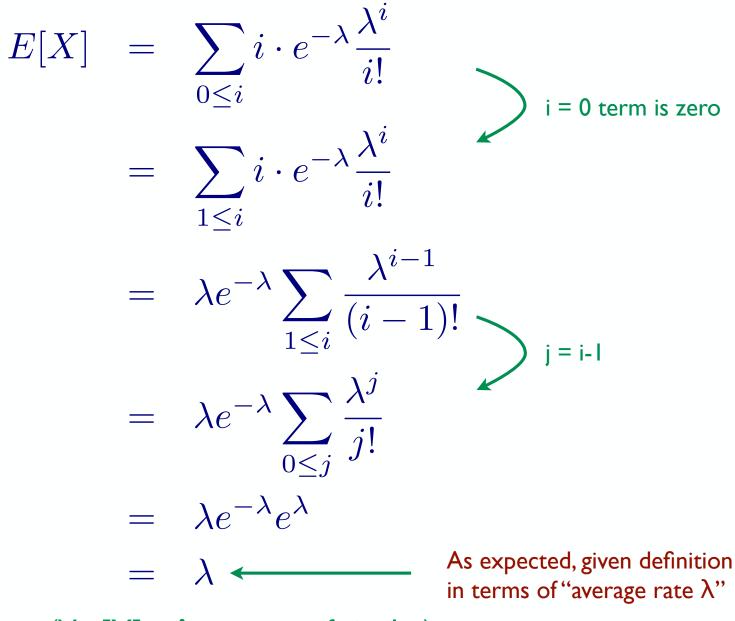
X is a Poisson r.v. with parameter λ if it has PMF:

$$P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$$

Is it a valid distribution? Recall Taylor series:



expected value of poisson r.v.s

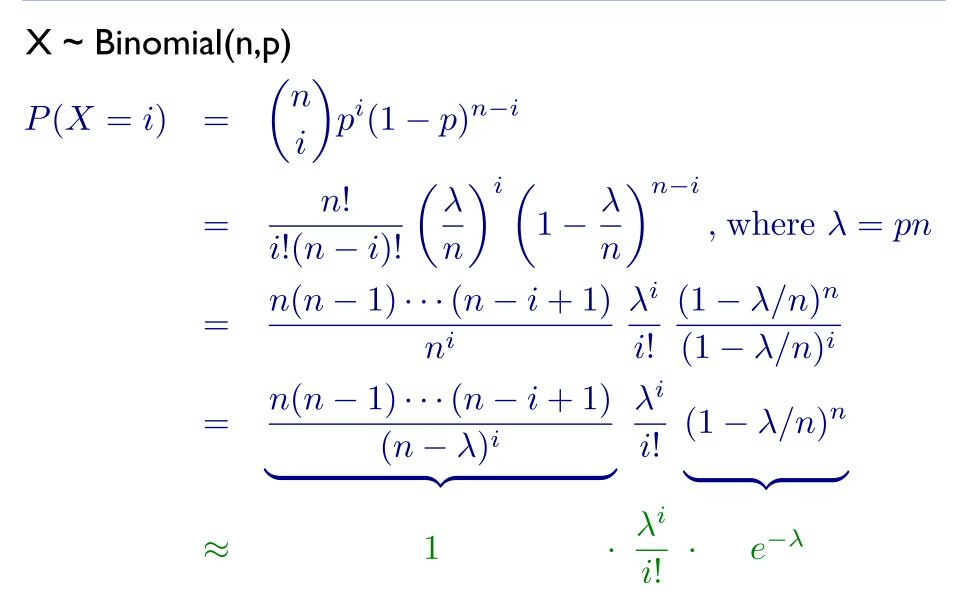


 $(Var[X] = \lambda, too; proof similar)$

Poisson approximates binomial when n is large, p is small, and $\lambda = np$ is "moderate"

Different interpretations of "moderate," e.g. n > 20 and p < 0.05 n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as $n \rightarrow \infty$ (equivalently, $p \rightarrow 0$) while holding $np = \lambda$



I.e., Binomial \approx Poisson for large n, small p, moderate i, λ . Handy: Poisson has only I parameter—the expected # of successes Consider sending bit string over a network

Send bit string of length $n = 10^4$

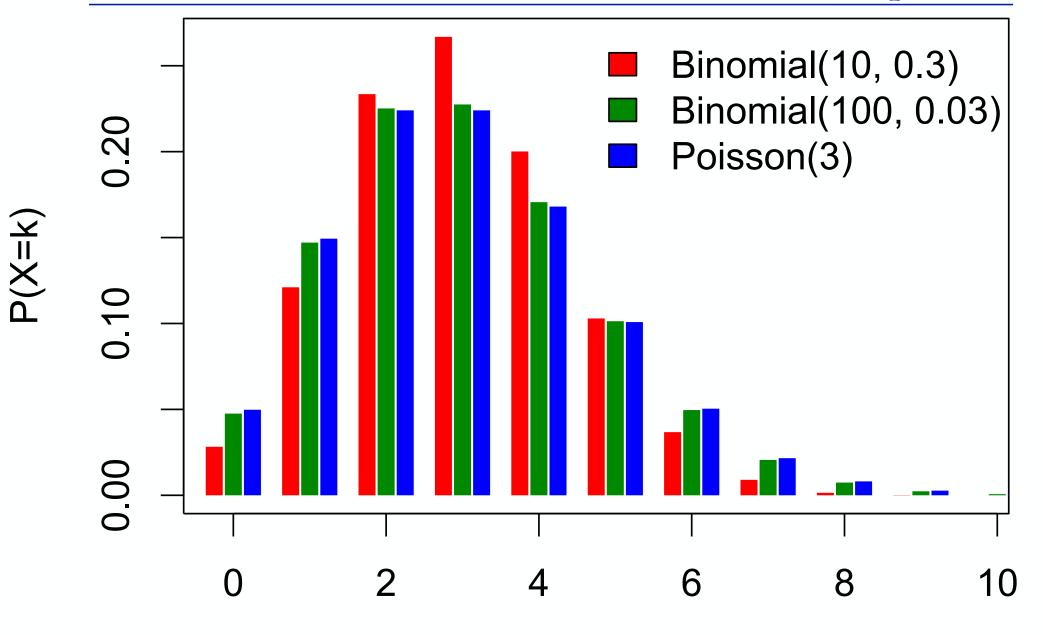
Probability of (independent) bit corruption is $p = 10^{-6}$

 $X \sim Poi(\lambda = 10^{4} \cdot 10^{-6} = 0.01)$

What is probability that message arrives uncorrupted? $P(X = 0) = e^{-\lambda} \frac{\lambda^0}{0!} = e^{-0.01} \frac{0.01^0}{0!} \approx 0.990049834$ Using Y ~ Bin(10⁴, 10⁻⁶): P(Y=0) ≈ 0.990049829

I.e., Poisson approximation (here) is accurate to ~5 parts per billion

binomial vs poisson



k

23

```
Recall: if Y \sim Bin(n,p), then:
E[Y] = pn
Var[Y] = np(I-p)
```

And if X ~ Poi(
$$\lambda$$
) where $\lambda = np$ ($n \rightarrow \infty, p \rightarrow 0$) then
E[X] = λ = np = E[Y]
Var[X] = $\lambda \approx \lambda(I - \lambda/n) = np(I - p) = Var[Y]$

random variables

Important Examples:

Uniform(a,b):
$$P(X = i) = \frac{1}{b-a+1}$$
 $\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)(b-a+2)}{12}$
Bernoulli(p): $P(X = 1) = p, P(X = 0) = 1-p$ $\mu = p, \sigma^2 = p(1-p)$
Binomial(n,p) $P(X = i) = {n \choose i} p^i (1-p)^{n-i}$ $\mu = np, \sigma^2 = np(1-p)$
Poisson(λ): $P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}$ $\mu = \lambda, \sigma^2 = \lambda$
 $Bin(n,p) \approx Poi(\lambda)$ where $\lambda = np$ fixed, $n \rightarrow \infty$ (and so $p = \lambda/n \rightarrow 0$)
Geometric(p) $P(X = k) = (1-p)^{k-1}p$ $\mu = 1/p, \sigma^2 = (1-p)/p^2$