
Bloom Filters

Anna Karlin
Most slides by Shreya Jayaraman, Luxi Wang, Alex Tsun



Bloom Filters: Motivation
● Large universe of possible data items.
● Hash table is stored on disk or in network, so any lookup is 

expensive.
● Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space 
doing lookups for items that aren’t even present. 

Examples:
● Google Chrome: wants to warn you if you’re trying to access 

a malicious URL. Keep hash table of malicious URLs.
● Network routers: want to track source IP addresses of 

certain packets, .e.g., blocked IP addresses.



Bloom Filters: Motivation
● Probabilistic data structure.
● Close cousins of hash tables.
● Ridiculously space efficient
● To get that, make occasional errors, specifically false 

positives.

Typical implementation: only 8 bits per element!



Bloom Filters
● Stores information about a set of elements.
● Supports two operations:

1. add(x) - adds x to bloom filter 
2. contains(x) - returns true if x in bloom filter, 

otherwise returns false
a. If return false, definitely not in bloom 

filter.
b. If return true, possibly in the structure 

(some false positives).



Index → 0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example
bloom filter t with m = 5 that uses k = 3 hash functions



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“thisisavirus.com”) → 1 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

Since all conditions satisfied, returns True (correctly)

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 
h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

TrueTrueTrue

Since all conditions satisfied, returns True (incorrectly)

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 
h1(“verynormalsite.com”) → 2 



Bloom Filters: Summary
● An empty bloom filter is an empty k x m bit array with 

all values initialized to zeros
○ k = number of hash functions
○ m = size of each array in the bloom filter

● add(x) runs in O(k) time
● contains(x) runs in O(k) time
● requires O(km) space (in bits!)
● Probability of false positives from collisions can be 

reduced by increasing the size of the bloom filter



Bloom Filters: Application
● Google Chrome has a database of malicious URLs, but it takes 

a long time to query.
● Want an in-browser structure, so needs to be efficient and 

be space-efficient
● Want it so that can check if a URL is in structure:

○ If return False, then definitely not in the structure 
(don’t need to do expensive database lookup, website is 
safe)

○ If return True, the URL may or may not be in the 
structure. Have to perform expensive lookup in this rare 
case.



False positive probability







Hash Table Bloom Filter

Comparison with Hash tables - Space
● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with k=8 and m = 10,000,000.



Hash Table Bloom Filter

Comparison with Hash tables - Time
● Say avg user visits 100,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 2%



Bloom Filters: Many Applications
● Any scenario where space and efficiency are important.
● Used a lot in networking
● In distributed systems when want to check consistency of 

data across different locations, might send a Bloom 
filter rather than the full set of data being stored.

● Google BigTable uses Bloom filters to reduce the disk 
lookups for non-existent rows and columns

● Internet routers often use Bloom filters to track blocked 
IP addresses.

● And on and on…



Bloom Filters typical example…
of randomized algorithms and randomized data structures.

● Simple
● Fast
● Efficient
● Elegant
● Useful!

● You’ll be implementing Bloom filters on pset 4. Enjoy!



!1

a zoo of  (discrete) 
random variables



discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           

Probability mass function:

Mean:

Variance:

 

!2



discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:

Example: value shown on one  
roll of a fair die is Unif(1,6):

P(X=i) = 1/6  
E[X]    = 7/2  
Var[X] = 35/12

!3

0 1 2 3 4 5 6 7

0.
10

0.
16

0.
22

i

P
(X
=i
)



Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)

Mean:

Variance:

 

!4



Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed

!5

Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Examples
# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

 # bit errors in file written to disk  
 # of typos in a book
 # of elements in particular bucket of large hash table  
 # of server crashes per day in giant data center

!6



binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Probability mass function:

Mean:

Variance:

!7



mean, variance of  the binomial (II)

!8



binomial pmfs

!9

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

PMF for X ~ Bin(10,0.5)

k

P
(X
=k
)

µ ± σ

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

PMF for X ~ Bin(10,0.25)

k

P
(X
=k
)

µ ± σ



binomial pmfs

!10

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

PMF for X ~ Bin(30,0.5)

k

P
(X
=k
)

µ ± σ

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

PMF for X ~ Bin(30,0.1)

k

P
(X
=k
)

µ ± σ



models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)

In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute

Extreme n and p values arise in many cases
# bit errors in file written to disk  
# of typos in a book
# of elements in particular bucket of large hash table  
# of server crashes per day in giant data center

!11



In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

Probability mass function:

Mean:                                           Variance:

geometric distribution

!12



In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   

Mean 1/p;                                    Variance (1-p)/p2

geometric distribution

!13



Poisson motivation

!14



!15



Siméon Poisson, 1781-1840

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be  
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:

# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year

# of babies born in a day at UW Med center
# of visitors to my web page today

!16



poisson  random variables

!17
0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

i

P
(X
=i
)

λ = 0.5
λ = 3



X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

poisson random variables

!18



expected value of  poisson r.v.s

!19

j = i-1

(Var[X] = λ, too; proof similar) 

As expected, given definition 
in terms of “average rate λ”

i = 0 term is zero



binomial random variable is poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Different interpretations of “moderate,” e.g.
n > 20 and p < 0.05
n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as  
n → ∞ (equivalently, p → 0) while holding np =  λ

!20



X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.
Handy: Poisson has only 1 parameter–the expected # of successes

binomial → poisson in the limit

!21



sending data on a network

Consider sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829

I.e., Poisson approximation (here) is accurate to ~5 parts per billion

!22



!23

binomial vs poisson

0 2 4 6 8 10

0.
00

0.
10

0.
20

k

P
(X
=k
)

Binomial(10, 0.3)
Binomial(100, 0.03)
Poisson(3)



expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]

!24



random variables

Important Examples:

Uniform(a,b): 

Bernoulli(p): P(X = 1) = p, P(X = 0) = 1-p  μ = p,   σ2= p(1-p)

Binomial(n,p)  μ = np, σ2 = np(1-p)

Poisson(λ):             μ = λ,   σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric(p)       P(X = k) = (1-p)k-1p μ = 1/p, σ2 = (1-p)/p2

!25


