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Bloom Filters: Motivation
● Large universe of possible data items.
● Hash table is stored on disk or in network, so any lookup is 

expensive.
● Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space 
doing lookups for items that aren’t even present. 

Examples:
● Google Chrome: wants to warn you if you’re trying to access 

a malicious URL. Keep hash table of malicious URLs.
● Network routers: want to track source IP addresses of 

certain packets, .e.g., blocked IP addresses.



Bloom Filters: Motivation
● Probabilistic data structure.
● Close cousins of hash tables.
● Ridiculously space efficient
● To get that, make occasional errors, specifically false 

positives.

Typical implementation: only 8 bits per element!



Bloom Filters
● Stores information about a set of elements.
● Supports two operations:

1. add(x) - adds x to bloom filter 
2. contains(x) - returns true if x in bloom filter, 

otherwise returns false
a. If return false, definitely not in bloom 

filter.
b. If return true, possibly in the structure 

(some false positives).



Index → 0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example
bloom filter t with m = 5 that uses k = 3 hash functions



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)
h1(“thisisavirus.com”) → 2 

h3(“thisisavirus.com”) → 4 

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“thisisavirus.com”) → 1 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

Since all conditions satisfied, returns True (correctly)

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4 
h2(“thisisavirus.com”) → 1 
h1(“thisisavirus.com”) → 2 



Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

TrueTrueTrue

Since all conditions satisfied, returns True (incorrectly)

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4 

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0 
h1(“verynormalsite.com”) → 2 



Bloom Filters: Summary
● An empty bloom filter is an empty k x m bit array with 

all values initialized to zeros
○ k = number of hash functions
○ m = size of each array in the bloom filter

● add(x) runs in O(k) time
● contains(x) runs in O(k) time
● requires O(km) space (in bits!)
● Probability of false positives from collisions can be 

reduced by increasing the size of the bloom filter



Bloom Filters: Application
● Google Chrome has a database of malicious URLs, but it takes 

a long time to query.
● Want an in-browser structure, so needs to be efficient and 

be space-efficient
● Want it so that can check if a URL is in structure:

○ If return False, then definitely not in the structure 
(don’t need to do expensive database lookup, website is 
safe)

○ If return True, the URL may or may not be in the 
structure. Have to perform expensive lookup in this rare 
case.
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Hash Table Bloom Filter

Comparison with Hash tables - Space
● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with k=8 and m = 10,000,000.

a

5,000,000 40 10,009
0
82 lo MB

200 MB



Hash Table Bloom Filter

Comparison with Hash tables - Time
● Say avg user visits 100,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 2%

100,000 0,5 see 100,000 x 1ms

50,000 see
2000 x 0,5 see

t 100,000 O 02 05 see

2100 see



Bloom Filters: Many Applications
● Any scenario where space and efficiency are important.
● Used a lot in networking
● In distributed systems when want to check consistency of 

data across different locations, might send a Bloom 
filter rather than the full set of data being stored.

● Google BigTable uses Bloom filters to reduce the disk 
lookups for non-existent rows and columns

● Internet routers often use Bloom filters to track blocked 
IP addresses.

● And on and on…



Bloom Filters typical example…
of randomized algorithms and randomized data structures.

● Simple
● Fast
● Efficient
● Elegant
● Useful!

● You’ll be implementing Bloom filters on pset 4. Enjoy!
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a zoo of  (discrete) 
random variables



discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           

Probability mass function:

Mean:

Variance:
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discrete uniform random variables

A discrete random variable X equally likely to take any 
(integer) value between integers a and b, inclusive, is uniform.

Notation:           X ~ Unif(a,b)

Probability:

Mean, Variance:

Example: value shown on one  
roll of a fair die is Unif(1,6):

P(X=i) = 1/6  
E[X]    = 7/2  
Var[X] = 35/12
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)

Mean:

Variance:
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed
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binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Examples
# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

 # bit errors in file written to disk  
 # of typos in a book
 # of elements in particular bucket of large hash table  
 # of server crashes per day in giant data center
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binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

Probability mass function:

Mean:

Variance:
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mean, variance of  the binomial (II)
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binomial pmfs
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binomial pmfs
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)

In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute

Extreme n and p values arise in many cases
# bit errors in file written to disk  
# of typos in a book
# of elements in particular bucket of large hash table  
# of server crashes per day in giant data center
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

Probability mass function:

Mean:                                           Variance:

geometric distribution
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In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   

Mean 1/p;                                    Variance (1-p)/p2

geometric distribution
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Poisson motivation
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