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BLOOM FILTERS



BLOOM FILTERS: MOTIVATION

® |arge universe of possible data items.

e Hash table is stored on disk or in network, so any lookup 1s
expensive.

® Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space
doing lookups for items that aren’t even present.

Examples:

® Google Chrome: wants to warn you 1if you’re trying to access
a malicious URL. Keep hash table of malicious URLs.

o Network routers: want to track source IP addresses of
certain packets, .e.g., blocked IP addresses.



BLOOM FILTERS: MOTIVATION

Probabilistic data structure.

Close cousins of hash tables.

Ridiculously space efficient

To get that, make occasional errors, specifically false
positives.

Typical implementation: only 8 bits per element!




BLOOM FILTERS

® Stores information about a set of elements.
® Supports two operations:
1. add(x) - adds x to bloom filter
2. contains(x) - returns true if x in bloom filter,
otherwise returns false
a. If return false, definitely not in bloom
filter.
b. If return true, possibly in the structure
(some false positives).



BLOOM FILTERS: EXAMPLE

bloom filter t with m 5 that uses k = 3 hash functions

function iN1TIALIZE(K,M)

fori=1,...,k:do 0 ©

t; = new bit vector of m 0’s




BLOOM FILTERS: EXAMPLE

bloom filter t of length m = 5 that uses k = 3 hash functions

add (“thisisavirus.com”)
function ADD(X) h,(“thisisavirus.com”) > 2
fori=1,...,k:do h,(“thisisavirus.com”) - 1
tilhi(x)] =1 h;(“thisisavirus.com”) > 4

Index > 0] 1 2 3 4
t, 0 0] 1 0] 0]
t, 0 1 0 0] 0]




BLOOM FILTERS: EXAMPLE

bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h, (“thisisavirus.com”) > 2

function cONTAINS(X)

return ) [ (x)] == 1 A [ha(x)] == 1 A -+ At [ (x)] == h,(“thisisavirus.com”) > 1
h;(“thisisavirus.com”) > 4

True True True
Index > 0] 1 2 3 4
t, (0] 0 1 0] 0
t, (0] 1 0 0] 0
t; (0] 0 0 0] 1




BLOOM FILTERS: EXAMPLE

bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h,(“thisisavirus.com”) > 2

h, (“thisisavirus.com”) > 1

h;(“thisisavirus.com”) > 4

Since all conditions satisfied, returns True (correctly)

Index > 0] 1 2 3 4
t, 0 0] 1 0] 0]
t, 0 1 0 0] 0]




BLOOM FILTERS: EXAMPLE

bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

h,(“verynormalsite.com”) > 2
function conTAINS(X)

[13 3 2
return t; [A;(x)] == 1 A t2[ha(x)] == 1 A -+ A 1 [ ()] == 1 hy(“verynormalsite.com”) > @

h;(“verynormalsite.com”) > 4

True True True
Index » 0 1 2 3 4
t, 0 1 1 0 0
t, 1 1 0 0 0
t, 0 0 0 0 1




BLOOM FILTERS: SUMMARY

® An empty bloom filter is an empty k x m bit array with

all values 1initialized to zeros
0 k = number of hash functions
O m = size of each array in the bloom filter

add(x) runs in O(k) time

contains(x) runs in 0O(k) time

requires O(km) space (in bits!)

Probability of false positives from collisions can be
reduced by 1increasing the size of the bloom filter




BLOOM FILTERS: APPLICATION

® Google Chrome has a database of malicious URLs, but it takes
a long time to query.

® Want an in-browser structure, so needs to be efficient and
be space-efficient

® Want it so that can check if a URL 1is 1in structure:

o If return False, then definitely not in the structure
(don’t need to do expensive database lookup, website ds
safe)

0 If return True, the URL may or may not be 1in the
structure. Have to perform expensive lookup in this rare

case.
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COMPARTSON WITH HASH TABLES - SPACE

® Google storing 5 milldon URLS,

each URL 40 bytes.

® Bloom filter with k=8 and m = 10,000,000.

Hash Table
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COMPARISON WITH HASH TABLES - TIME

® Say avg user visits 100,000 URLs in a year, of which 2,000 are malicious.
® 0.5 seconds to do lookup in the database, 1lms for lookup in Bloom filter.

® Suppose the false positive rate is 2%

Bloom Filter
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BLOOM FILTERS: MANY APPLICATIONS

Any scenario where space and efficiency are important.
Used a lot in networking
In distributed systems when want to check consistency of
data across different locations, might send a Bloom
filter rather than the full set of data being stored.

® Google BigTable uses Bloom filters to reduce the disk
lookups for non-existent rows and columns

e Internet routers often use Bloom filters to track blocked
IP addresses.

® And on and on..



BLOOM FILTERS TYPICAL EXAMPLE.. ‘“

of randomized algorithms and randomized data structures.

Simple
Fast
Efficient
Elegant
Useful!

You’ll be implementing Bloom filters on pset 4. Enjoy!
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a zoo of (discrete)
random variables




discrete uniform random variables

A discrete random variable X equally likely to take any
(integer) value between integers a and b, inclusive, is uniform.

Ram$()f) = %q)aﬂ).-- y by

Notation: (Je§ (0\ )b) A kc:@»&(X)

b-a+)
Probability mass function: P X ( “) = o 0.
Mean: %

Variance:



discrete uniform random variables

A discrete random variable X equally likely to take any
(integer) value between integers a and b, inclusive, is uniform.

Notation: X ~ Unif(a,b)
1
b—a+1

Probability: P(X =1i) =

a-+b

Mean,Variance: F[X] = ; Var|X] = (b—a)(b—a+2)

12

Example: value shown on one NI

roll of a fair die is Unif(1,6): ~ °© 4
P(X=i) = 1/6 x 2 llllll
E[X] =7/2 o
Var[X] = 35/12 =

0O 1 2 3 4 5 6 7



WO oo™ Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
P(X=1)=p and P(X=0)=1-p
X is called a Bernoulli random variable: X ~ Ber(p)

Mean:
Variance:
_mesn Ny
Y 2)-EO) —p - 9 ko
-~ £ 15 ), =P - v T -
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Bernoulli random variables

An experiment results in “Success” or “Failure”
X is an indicator random variable (1 = success, 0 = failure)
P(X=1)=p and P(X=0)=1-p
X is called a Bernoulli random variable: X ~ Ber(p)
E[X] = E[X?] = p
Var(X) = E[X?] - (E[X])2 = p — p2 = p(I-p)

Examples:
coin flip
random binary digit &
whether a disk drive crashed aan SOF .7
(\t Job (aka James,]aques)

Bernoulli, 1654 — 1705




binomial random variables

/
Consider n independent random variables Y; ~ Ber(BS

X = 2 Yiis the number of successes in n trials g -
X is a Binomial random variable: X ~ Bin(n,p)

F.m.c.’(

Examples
# of heads in n coin flips
# of I’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster
# bit errors in file written to disk
# of typos in a book
# of eIemeré in particular bucket of large hash table
# of server crashes per day in giant data center




binomial random variables

Consider n independent random variables Y; ~ Ber(p)
X = 2iYiis the number of successes in n trials
X is a Binomial random variable: X ~ Bin(n,p)

i ‘_ El%)=p
A=Y e Ne(K)= QW R

Probability mass function:

p 2 (U g e

Mean: o | aAton R
&) v 2(vp)
S b) wp " P (- g}_l
. ,c) e " ‘?‘
Variance:
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mean, variance of the binomial (II)

If Y1,Y5,...,Y, ~ Ber(p) and independent,
then X =" | Y; ~ Bin(n,p).

ZE | = nE[Y1] =np

(Var[X] = np(1 — p) J

n

> Y
1=1

n

Var[X] = Var = ZVar ;] = nVar[Y1] = np(1 — p)
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P(X=k)
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.
X = # of corrupted bits, X ~ Bin(4, 0.1)

In real networks, large bit strings (length n = 104)
Corruption probability is very small:p = 106
X ~ Bin(104, 10-¢) is unwieldy to compute

P A A
c—
Extreme n and p values arise in many cases s eda "Q

# bit errors in file written to disk

# of typos in a book

# of elements in particular bucket of large hash table
# of server crashes per day in giant data center

11



geometric distribution

In a series Xi, Xz, ... of Bernoulli trials with success

probability p, letY be the index of the first success,i.e., |
_ fmely wpnlt &
Xi=X2=..= X =0& Xy = | UM B swsad

ThenY is a geometric random variable with parameter p.

Yo Gro(})

Examples: (\L)
[\Number of coin flips until first head Grown (‘) Xl_—
Number of blind guesses on SAT until | get one right “) (\-F)K ‘)
Number of darts thrown until you hit a bullseye ~ %\ »
Number of random probes into hash table until empty slot . bb (\ ?) ‘\Ll
Number of wild guesses at a password until you hit it QY )
o
- ?(t\[ .__y_) = Wy suwaa {s on " ‘\ﬁa\> ) "f;
Probability mass function:'/fx(t) A) Y
\ :
Mean: — Variance:

v

12



geometric distribution

In a series X, Xy, ... of Bernoulli trials with success
probability p, letY be the index of the first success, i.e.,

Xi=X2=..= X1 =0& Xy =1
ThenY is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on SAT until | get one right

Number of darts thrown until you hit a bullseye

[ Number of random probes into hash table until empty @

Number of wild guesses at a password until you hit it

P(Y=k) = (I-p)<Ip;

Mean| |/p; Variance|(|-p)/p2

13



Poisson motivation
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