Finish BLOOM FILTERS

ANNA KARLIN Most slides by Shreya Jayaraman, Luxi Wang, Alex Tsun

BLOOM FILTERS: MOTIVATION

- Large universe of possible data items.
- Hash table is stored on disk or in network, so any lookup is expensive.
- Many (if not most) of the lookups return "Not found".

Altogether, this is bad. You're wasting **a lot of time and space** doing lookups for items that aren't even present.

Examples:

- Google Chrome: wants to warn you if you're trying to access a malicious URL. Keep hash table of malicious URLs.
- Network routers: want to track source IP addresses of certain packets, .e.g., blocked IP addresses.

BLOOM FILTERS: MOTIVATION

- Probabilistic data structure.
- Close cousins of hash tables.
- Ridiculously space efficient
- To get that, make occasional errors, specifically false positives.

Typical implementation: only 8 bits per element!

BLOOM FILTERS

- Stores information about a set of elements.
- Supports two operations:
 - 1. add(x) adds x to bloom filter
 - 2. contains(x) returns true if x in bloom filter,

otherwise returns false

- a. If return false, **definitely** not in bloom filter.
- b. If return true, **possibly** in the structure (some false positives).

bloom filter t with m = 5 that uses k = 3 hash functions

function INITIALIZE(k,m) **for** i = 1, ..., k: **do** t_i = new bit vector of m 0's

Index →	Θ	1	2	3	4
t1	Θ	Θ	Θ	Θ	Θ
t2	Θ	Θ	Θ	Θ	Θ
t3	Θ	Θ	Θ	Θ	Θ

bloom filter t of length m = 5 that uses k = 3 hash functions

function ADD(X)
for <i>i</i> = 1, , <i>k</i> : do
$t_i[h_i(x)] = 1$

add("thisisavirus.com")

- h_1 ("thisisavirus.com") $\rightarrow 2$
- $h_2("thisisavirus.com") \rightarrow 1$
- h_3 ("thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t1	Θ	Θ	1	Θ	Θ
t ₂	Θ	1	Θ	Θ	Θ
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

function CONTAINS(X)	
$\mathbf{return} \ t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \cdots \land h$	$h_k[h_k(x)] == 1$

True

True

True

contains("thisisavirus.com")

- $h_1($ "thisisavirus.com") $\rightarrow 2$
- $h_2("thisisavirus.com") \rightarrow 1$
- $h_3($ "thisisavirus.com") $\rightarrow 4$

Index →	Θ	1	2	3	4
t ₁	Θ	Θ	1	Θ	0
t ₂	Θ	1	Θ	Θ	0
t ₃	Θ	Θ	Θ	Θ	1

bloom filter t of length m = 5 that uses k = 3 hash functions

func	tion CONTAINS(X return $t_1[h_1(x)]$	$= 1 \wedge t_2[h_2($	$x)] == 1 \wedge \cdots$	$\wedge t_k[h_k(x)] =$	= 1	$h_1($	thisisa	virus.com virus.com	$(") \rightarrow 2$ $(") \rightarrow 1$	
	True	Tr	ue	True			thisisa	isavirus.com'		
	Since all	condition	s satisfi	ed, retur	ns Tru	e (co	orrectly	')		
		Index →	Θ	1	2		3	4		
		t1	O	O	1		0	O	-	
		t ₂	Θ	1	0		0	Θ		
		t ₃	Θ	Θ	0		0	1		

contains("thisisavirus.com")

bloom filter t of length m = 5 that uses k = 3 hash functions

contains("verynormalsite.com")

function CONTAINS(X)

True

return
$$t_1[h_1(x)] == 1 \land t_2[h_2(x)] == 1 \land \dots \land t_k[h_k(x)] == 1$$

True

$$h_1("very normal site.com") \rightarrow 2$$

$$h_2("very normal site.com") \rightarrow 0$$

$$h_3$$
("verynormalsite.com") \rightarrow 4

Since all conditions satisfied, returns True (incorrectly) Index → 0 1 2 3 4

True

Index →	Θ	1	2	3	4	
tı	Θ	1	1-	Θ	Θ	
t ₂	1	1	Θ	Θ	0	
t ₃	0	Θ	Θ	Θ	1	

BLOOM FILTERS: SUMMARY

- An empty bloom filter is an empty k x m bit array with all values initialized to zeros
 - \circ k = number of hash functions
 - $\circ~$ m = size of each array in the bloom filter
- add(x) runs in O(k) time
- contains(x) runs in O(k) time
- requires O(km) space (in bits!)
- Probability of false positives from collisions can be reduced by increasing the size of the bloom filter

BLOOM FILTERS: APPLICATION

- Google Chrome has a database of malicious URLs, but it takes a long time to query.
- Want an in-browser structure, so needs to be efficient and be space-efficient
- Want it so that can check if a URL is in structure:
 - If return False, then definitely not in the structure (don't need to do expensive database lookup, website is safe)
 - If return True, the URL may or may not be in the structure. Have to perform expensive lookup in this rare case.

Added fynnysk to Bluom filter j=1...,n FALSE POSITIVE PROBABILITY h:(45) all muchally independent here item X shows up. & uniformly dist'd area corresponding array hily;) ~ Unif (0,1,..., m-1)} Pr(folse pos onx) $= Pr(+, [h, (x)] = 1, t_{a}[h_{a}(x)] = 1, ..., t_{k} [h_{k}(x)] = 1)$ h;(yj)=a; Pr(7 yies

Pr(Yj hilyi) a: 5 Pr (hily) **a**; - m $\left(1-\frac{1}{m}\right)^{n}$ - j-₹0.05

BLOOM FILTERS: MANY APPLICATIONS

- Any scenario where space and efficiency are important.
- Used a lot in networking
- In distributed systems when want to check consistency of data across different locations, might send a Bloom filter rather than the full set of data being stored.
- Google BigTable uses Bloom filters to reduce the disk lookups for non-existent rows and columns
- Internet routers often use Bloom filters to track blocked IP addresses.
- And on and on...

BLOOM FILTERS TYPICAL EXAMPLE...

of randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

• You'll be implementing Bloom filters on pset 4. Enjoy!

a zoo of (discrete) random variables

Probability mass function:

$$p_{X}(k) = \begin{cases} b - a + 1 \\ 0 \end{cases}$$

K CRong(X)

0.6.

Mean:

Variance:

A discrete random variable X equally likely to take any (integer) value between integers *a* and *b*, inclusive, is *uniform*.

 $X \sim \text{Unif}(a,b)$ Notation: Probability: $P(X = i) = \frac{1}{b - a + 1}$ Mean, Variance: $E[X] = \frac{a+b}{2}, Var[X] = \frac{(b-a)(b-a+2)}{12}$ Example: value shown on one 0.22 roll of a fair die is Unif(1,6): P(X=i) 0.16 P(X=i) = 1/6E[X] = 7/20.10 Var[X] = 35/12

3

5

An experiment results in "Success" or "Failure"

X is an indicator random variable (I = success, 0 = failure)P(X=I) = p and P(X=0) = I-p

X is called a Bernoulli random variable: X ~ Ber(p)

Mean:

Variance:

An experiment results in "Success" or "Failure" X is an *indicator random variable* (I = success, 0 = failure) P(X=I) = p and P(X=0) = I-pX is called a *Bernoulli* random variable: X ~ Ber(p) $E[X] = E[X^2] = p$ $Var(X) = E[X^2] - (E[X])^2 = p - p^2 = p(I-p)$

Examples: coin flip random binary digit whether a disk drive crashed

Jacob (aka James, Jacques) Bernoulli, 1654 – 1705

Johann I

(1667-1748)

ohann III

(1687-1759) (1695-1726) (1700-1782)

Nikolau

(1662-1716

binomial random variables

Consider n independent random variables Y_i ~ Ber(p)

 $X = \Sigma_i Y_i$ is the number of successes in n trials

X is a Binomial random variable: X ~ Bin(n,p)

Examples

of heads in n coin flips

of I's in a randomly generated length n bit string # of disk drive crashes in a 1000 computer cluster

Px(1)= A(X=k)

bit errors in file written to disk

of typos in a book

of elements in particular bucket of large hash table

of server crashes per day in giant data center

binomial random variables

Consider n independent random variables $Y_i \sim Ber(p)$ $X = \Sigma_i Y_i$ is the number of successes in n trials X is a Binomial random variable: $X \sim Bin(n,p)$ $E(x_i)=p$ $Var(x_i)=p(1-p)$ X= Y, + Y2+ ... + Yn Probability mass function: $p_{\chi}(k) = \binom{\gamma}{k} p^{k} (r p)^{n}$ k= 0, 1, --, n Mean:

Variance:

mean, variance of the binomial (II)

If
$$Y_1, Y_2, \dots, Y_n \sim Ber(p)$$
 and independent,
then $X = \sum_{i=1}^n Y_i \sim Bin(n, p)$.

$$E[X] = np$$
$$E[X] = E\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} E[Y_i] = nE[Y_1] = np$$

$$\begin{aligned} & \left(\mathsf{Var}[X] = np(1-p) \right) \\ & \mathsf{Var}[X] = \mathsf{Var}\left[\sum_{i=1}^{n} Y_i\right] = \sum_{i=1}^{n} \mathsf{Var}\left[Y_i\right] = n\mathsf{Var}[Y_1] = np(1-p) \end{aligned}$$

binomial pmfs

PMF for X ~ Bin(10,0.25)

9

binomial pmfs

10

Sending a bit string over the network n = 4 bits sent, each corrupted with probability 0.1 X = # of corrupted bits, X ~ Bin(4, 0.1)

In real networks, large bit strings (length $n \approx 10^4$) Corruption probability is very small: $p \approx 10^{-6}$ X ~ Bin(10⁴, 10⁻⁶) is unwieldy to compute

Extreme n and p values arise in many cases

- # bit errors in file written to disk
- # of typos in a book

of elements in particular bucket of large hash table

of server crashes per day in giant data center

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e., $X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = 1$ Then Y is a geometric random variable with parameter p.

Examples:

Number of coin flips until first head Number of blind guesses on SAT until I get one right Number of darts thrown until you hit a bullseye Number of random probes into hash table until empty slot Number of wild guesses at a password until you hit it Pr(Y=k) = Pr(frost = nume is on kth trial)Probability mass function: $= P_x(k)$

Mean:

Variance:

In a series $X_1, X_2, ...$ of Bernoulli trials with success probability p, let Y be the index of the first success, i.e.,

$$X_1 = X_2 = ... = X_{Y-1} = 0 \& X_Y = 1$$

Then Y is a *geometric* random variable with parameter p.

Examples:

Number of coin flips until first head

Number of blind guesses on SAT until I get one right

Number of darts thrown until you hit a bullseye

Number of random probes into hash table until empty slot

Number of wild guesses at a password until you hit it

$$P(Y=k) = (I-p)^{k-1}p;$$

Poisson motivation

