
3.3 Variance and Standard Deviation
recap

Anna Karlin
Most Slides by Alex Tsun

Agenda
● Variance
● Independence of random variables
● Properties of variance

Variance and Standard Deviation (SD)
More Useful

F Xi L

I I IT LT

Van Xi E Xi El xDh t

ELxi7 E z 5 4

Random variable X and event E are independent if the event E
is independent of the event {X=x} (for any fixed x), i.e.

∀x P(X = x and E) = P(X=x) • P(E)

Two random variables X and Y are independent if the events
{X=x} and {Y=y} are independent for any fixed x, y, i.e.

∀x, y P(X = x and Y=y) = P(X=x) • P(Y=y)

Intuition as before: knowing X doesn’t help you guess Y or E
and vice versa.

Random variables and independence

Vx P X xlE P X x PCE o

Vx y P X xlY y P X x poky o

Important facts about independent random variables
Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y]

Theorem: If X and Y are independent, then
Var[X + Y] = Var[X] + Var[Y]

Corollary: If X1 + X2 + … + Xn are mutually independent then
Var[X1 + X2 + … + Xn] = Var[X1] + Var [X2] + … + Var[Xn]

EAT DJ

p p

Independent vs dependent r.v.s
● Dependent r.v.s can reinforce/cancel/correlate in

arbitrary ways.
● Independent r.v.s are, well, independent.

Example:

Z = X1 + X2 +…. + Xn
Xi is indicator r.v. with probability 1/2 of being 1.

versus

W = n X1

Eui went

I L o wimprobtz
o

Xi's an independentof each other
z w

EG ECW A

THE ai na n ifb n Iz n too

XitXitX 1Xp c o o

ex d IZJ EflwEND By

D i

Z XitX2t 1 Xn VI Va

w nX a 0
or b Z Z

4 o H
Vara t4 d Z H
W no Tz farzuse.LT

Vayu wa fEfwD2
WHA t.MYIzeffdenYemlx4t

tvalx

n2tzt02t2FFzJ If If If

lfarweompuledireety.MX
xxIIxEx.m

O

0,1 I 0

1,0 I 2
111 2 2

Important facts about independent random variables
Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y]

Theorem: If X and Y are independent, then
Var[X + Y] = Var[X] + Var[Y]

Corollary: If X1 + X2 + … + Xn are mutually independent then
Var[X1 + X2 + … + Xn] = Var[X1] + Var [X2] + … + Var[Xn]

E[XY] for independent random variables

products of independent r.v.s

!X

Note: NOT true in general; see earlier example E[X2]≠E[X]2

independence

● Theorem: If X & Y are independent, then E[X•Y] =
E[X]•E[Y]

● Proof:

I

Variance of a sum of independent r.v.s

variance of independent r.v.s is additive

!X

(Bienaymé, 1853)Theorem: If X and Y are independent, then
Var[X + Y] = Var[X] + Var[Y]

Proof:

Probability

Alex Tsun
Joshua Fan

Bloom Filters

Anna Karlin
Most slides by Shreya Jayaraman, Luxi Wang, Alex Tsun

Hashing

Basic Problem

13

Problem: Store a subset ! of a large set ".

Example. " = set of 128 bit strings
! = subset of strings of interest

" ≈ 2128

! ≈ 1000

Two goals:
1. Constant-time answering of queries “Is % ∈ !?”
2. Minimize storage requirements.

Naïve Solution – Constant Time

14

Idea: Represent ! as an array (with 2128 entries.

! " # … % …
" ! " ! " … ! !

A ! = #1 if ! ∈ (
0 if ! ∉ (

Membership test: To check.! ∈ ! just check whether A % = 1.

Storage: Require storing 264 bits, even for small !.
!"→ constant time!

#$

(= {0,2, … , K}

128

Naïve Solution – Small Storage

15

Idea: Represent ! as a list with |!| entries.

(= {0, 2, … , 1} 0 2 … K

Storage: Grows with |!| only !"

Membership test: Check ! ∈ ! requires time linear in |!|
(Can be made logarithmic by using a tree) #$

Hash Table

16

Idea: Map elements in ! into an array (using a hash function

hash function 2: U → [7]

1
2

3
4 5

K-1
K

1

2
3

4
5

Membership test: To check % ∈ !
just check whether (2(%) = %

Storage: 5 elements

h U o m B

a
i

w 3

m X

Hash Table

17

Idea: Map elements in ! into an array (using a hash function

Membership test: To check % ∈ !
just check whether (2(%) = %

Storage: " elements

Challenge 1: Ensure
2 9 ≠ 2 ;
for most !, A ∈ (

Challenge 2: Ensure
7 = B(|(|)

n

wa why A
M hIw 3

g
it

M n ws

chaining

Hashing –collisions
● Collisions occur when two elements of set map to the same

location in the hash table.
● Common solution: chaining – at each location (bucket) in

the table, keep linked list of all elements that hash
there.

● Want: hash function that distributes the elements of S
well across hash table locations. Ideally uniform
distribution!

Analyze hashing ltssu.me hash fn maps
each ett EU independentlyto

uniformly random
location

in table

0
Reasonable

h

Hash Tables

● They store the data itself
● With a good hash function, the

data is well distributed in the
table and lookup times are
small.

● However, they need at least as
much space as all the data
being stored

● E.g. storing strings, or IP
addresses or long DNA
sequences.

Summary

I

i iE I

Bloom Filters: Motivation
● Large universe of possible data items.
● Data items are large (say 128 bits or more)
● Hash table is stored on disk or across network, so any

lookup is expensive.
● Many (if not nearly all) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space
doing lookups for items that aren’t even present.

2128

Bloom Filters: Motivation
● Large universe of possible data items.
● Hash table is stored on disk or in network, so any lookup is

expensive.
● Many (if not most) of the lookups return “Not found”.

Altogether, this is bad. You’re wasting a lot of time and space
doing lookups for items that aren’t even present.

Examples:
● Google Chrome: wants to warn you if you’re trying to access

a malicious URL. Keep hash table of malicious URLs.
● Network routers: want to track source IP addresses of

certain packets, .e.g., blocked IP addresses.I I

Bloom Filters: Motivation
● Probabilistic data structure.
● Close cousins of hash tables.
● Ridiculously space efficient
● To get that, make occasional errors, specifically false

positives.

Typical implementation: only 8 bits per element!

only inchoice
of hashhrs

Bloom Filters

Bloom Filters
● Stores information about a set of elements.
● Supports two operations:

1. add(x) - adds x to bloom filter
2. contains(x) - returns true if x in bloom filter,

otherwise returns false
a. If return false, definitely not in bloom

filter.
b. If return true, possibly in the structure

(some false positives).

Bloom Filters
● Why accept false positives?

○ Speed – both operations very very fast.
○ Space – requires a miniscule amount of space relative

to storing all the actual items that have been added.

○ Often just 8 bits per inserted item!

Bloom Filters: Initialization

Size of array
associated to
each hash
function.

Number of
hash
functions

for each hash
function,
initialize an
empty bit vector
of size m

bit

Index → 0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example
bloom filter t with m = 5 that uses k = 3 hash functions

Bloom Filters: Add

for each hash
function hi

hi(x) → result of hash function hi on x

hiG
hat
host

Bloom Filters: Add

for each hash
function hi

Index into ith bit-vector, at index
produced by hash function and set to 1

h1

Bloom Filters: Example
bloom filter t with m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

Index → 0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)
h1(“thisisavirus.com”) → 2

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)

h2(“thisisavirus.com”) → 1

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

h1(“thisisavirus.com”) → 2

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“thisisavirus.com”)
h1(“thisisavirus.com”) → 2

h3(“thisisavirus.com”) → 4

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

h2(“thisisavirus.com”) → 1

Bloom Filters: Contains

Returns True if the bit vector for each
hash function has bit 1 at index
determined by that hash function,
otherwise returns False

Bloom Filters: Example
bloom filter t with m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)
h1(“thisisavirus.com”) → 2

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

True

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h2(“thisisavirus.com”) → 1

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrue

h1(“thisisavirus.com”) → 2

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

h2(“thisisavirus.com”) → 1
h1(“thisisavirus.com”) → 2

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

TrueTrueTrue

Since all conditions satisfied, returns True (correctly)

contains(“thisisavirus.com”)

h3(“thisisavirus.com”) → 4
h2(“thisisavirus.com”) → 1
h1(“thisisavirus.com”) → 2

Bloom Filters: False Positives
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)

Index → 0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1
h2(“totallynotsuspicious.com”) → 0

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1
h2(“totallynotsuspicious.com”) → 0
h3(“totallynotsuspicious.com”) → 4

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Collision, is
already set
to 1

Bloom Filters: False Positives
bloom filter t of length m = 5 that uses k = 3 hash functions

add(“totallynotsuspicious.com”)
h1(“totallynotsuspicious.com”) → 1
h2(“totallynotsuspicious.com”) → 0
h3(“totallynotsuspicious.com”) → 4

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

contains(“verynormalsite.com”)

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

True

contains(“verynormalsite.com”)
h1(“verynormalsite.com”) → 2

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

TrueTrue

contains(“verynormalsite.com”)

h2(“verynormalsite.com”) → 0

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h1(“verynormalsite.com”) → 2

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

TrueTrueTrue

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0
h1(“verynormalsite.com”) → 2

Bloom Filters: Example
bloom filter t of length m = 5 that uses k = 3 hash functions

TrueTrueTrue

Since all conditions satisfied, returns True (incorrectly)

contains(“verynormalsite.com”)

h3(“verynormalsite.com”) → 4

Index → 0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

h2(“verynormalsite.com”) → 0
h1(“verynormalsite.com”) → 2

melts M n

m 8h

Bloom Filters: Summary
● An empty bloom filter is an empty k x m bit array with

all values initialized to zeros
○ k = number of hash functions
○ m = size of each array in the bloom filter

● add(x) runs in O(k) time
● contains(x) runs in O(k) time
● requires O(km) space (in bits!)
● Probability of false positives from collisions can be

reduced by increasing the size of the bloom filter

Bloom Filters: Application
● Google Chrome has a database of malicious URLs, but it takes

a long time to query.
● Want an in-browser structure, so needs to be efficient and

be space-efficient
● Want it so that can check if a URL is in structure:

○ If return False, then definitely not in the structure
(don’t need to do expensive database lookup, website is
safe)

○ If return True, the URL may or may not be in the
structure. Have to perform expensive lookup in this rare
case.

False positive probability
Assumption hashtns are

completely random

Suppose new URL arrives I'm staring

Hash Table Bloom Filter

Comparison with Hash tables - Space
● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with k=8 and m = 10,000,000.

Hash Table Bloom Filter

Comparison with Hash tables - Time
● Say avg user visits 100,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 2%

Bloom Filters: Many Applications
● Any scenario where space and efficiency are important.
● Used a lot in networking
● In distributed systems when want to check consistency of

data across different locations, might send a Bloom
filter rather than the full set of data being stored.

● Google BigTable uses Bloom filters to reduce the disk
lookups for non-existent rows and columns

● Internet routers often use Bloom filters to track blocked
IP addresses.

● And on and on…

Bloom Filters typical example…
of randomized algorithms and randomized data structures.

● Simple
● Fast
● Efficient
● Elegant
● Useful!

● You’ll be implementing Bloom filters on pset 4. Enjoy!

