PROBABILITY 3 DISCRETE RANDOM VARIABLES BASICS

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- RECAP ON RVS
- EXPECTATION
- LINEARITY OF EXPECTATION (LOE)
- LAW OF THE UNCONSCIOUS STATISTICIAN (LOTUS)

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

If Ω_X is finite or countably infinite (typically integers or a subset), X is a <u>discrete</u> random variable (drv). Else if Ω_X is uncountably large (the size of real numbers), X is <u>continuous</u> random variable.

PROBABILITY MASS FUNCTION (PMF)

The **probability mass function (pmf)** of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number. Hence,

$$\sum_{z\in\Omega_X}p_X(z)=1$$

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY WGJ ~> Xw) Each permutation equally likely # people who get their own homework Χ: JUX 231 Prob Outcome w X(w) 313 123 1/6 3 213 1/6132 1 321 1/6213 1 1/6 231 0 312 CDF 1/60 pmf $P_{X}^{(k)} = \begin{cases} \frac{1}{3} \\ \frac{1}{4} \\ \frac{1}{6} \end{cases}$ 1/6321 $F_{X}^{(x)=} = \begin{cases} x < 0 \\ \frac{1}{3} & 0 \le x < 1 \\ \frac{5}{6} & 1 \le x < 3 \\ 1 & x > 3 \end{cases}$ $F_{X}^{(x)=} Pr(X \le x)$ 1 k=0 k=1 k=3 otherwise $\sum_{k\in\mathcal{N}^{\times}} b^{\times}(k) = T$

EXPECTATION

The <u>expectation/expected value/average</u> of a discrete random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Or equivalently,

$$E[X] = \sum_{k \in \Omega_X} k \cdot p_X(k)$$

The interpretation is that we take an average of the values in Ω_X , but weighted by their probabilities.

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework
- What is E(X)?

Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	321	1

REPEATED COIN FLIPPING

Flip a biased coin with probability p of coming up Heads n times. Each flip independent of all others.

X is number of Heads.

```
What is E(X)?
```


REPEATED COIN FLIPPING

Flip a biased coin with probability p of coming up Heads n times.

X is number of Heads.

What is E(X)?

$$E[X] = \sum_{i=0}^{n} i\binom{n}{i} p^{i} (1-p)^{n-i}$$

= $\sum_{i=1}^{n} i\binom{n}{i} p^{i} (1-p)^{n-i}$
= $\sum_{i=1}^{n} n\binom{n-1}{i-1} p^{i} (1-p)^{n-i}$
= $np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i}$
= $np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1-p)^{n-1-j}$
= $np(p+(1-p))^{n-1} = np$

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) ON AN AVERAGE DAY? E[2] = E[X + Y] = E(X) + E(Y) = 3 + 7 = 10

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? $\begin{bmatrix} [2] = E[X + Y] = \begin{bmatrix} [X + Y] \end{bmatrix} = \begin{bmatrix} [X$

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) ON AN AVERAGE DAY? E[7] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How MUCH PROFIT DO YOU EXPECT TO MAKE? E[52 - 20] = 5E(7) - 30 = 30 $= 5 \cdot 10 - 30 = 30$

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? E[2] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How

MUCH PROFIT DO YOU EXPECT TO MAKE? $E[52 - 20] = 5E[7] - 20 = 5 \times 10 - 20 = 30$

Linearity of Expectation: Let Ω be the sample space of an experiment, $X, Y: \Omega \to \mathbb{R}$ be (possibly "dependent") random variables both defined on Ω , and $a, b, c \in \mathbb{R}$ be scalars. Then,

E[X+Y] = E[X] + E[Y]

and

$$E[aX+b] = aE[X]+b$$

Combining them gives,

E[aX + bY + c] = aE[X] + bE[Y] + c

LINEARITY OF EXPECTATION (PROOF)

$$E[X] + E[Y] = \sum_{\omega \in \Omega} X(\omega)P(\omega) + \sum_{\omega \in \Omega} Y(\omega)P(\omega)$$

$$= \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))P(\omega)$$

$$= \sum_{\omega \in \Omega} (X + Y)(\omega)P(\omega)$$

$$= E[X + Y]$$

COROLLARY: LINEARITY FOR SUM OF LOTS OF R.V.S

 $E(X_1 + X_2 + \ldots + X_n) = E(X_1) + E(X_2) + \ldots + E(X_n)$

Proof by induction!

HOMEWORKS OF STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework
- What is E(X) when there are n students?

Prob	Outcome w	Х	X,	Xa	X3
1/6	123	3	J	1	1
1/6	132	1	1	0	0
1/6	213	1	0	0	1
1/6	231	0	Ö	O	٥
1/6	312	0	0	0	0
1/6	321	1	0	1	C

 $E[X_{i}] = O \cdot Pr(X_{i}=0) + 1 Pr(X_{i}=1)$ = $Pr(X_{i}=1) = \frac{1}{3}$

E(x)= 2 kP(x=k)

X:= { yshdent gets hu back

 $\underbrace{X}_{=} \times \frac{1}{1 + x_{2} + x_{3}}$ $E(X) = E(X_{1} + X_{3} + X_{3})$ $= E(X_{1}) + E(X_{3}) + E(X_{3})$

INDICATOR RANDOM VARIABLE

• For any event A, can define the indicator random variable for A

COMPUTING COMPLICATED EXPECTATIONS

• Often boils down to finding the right way to decompose the random variable into simple random variables (often indicator random variables) and then applying linearity of expectation.

REPEATED COIN FLIPPING

Flip a biased coin with probability p of coming up Heads n times. $E[X] = \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$

X is number of Heads.

What is E(X)?

$$\begin{aligned} X] &= \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} \\ &= \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} \\ &= \sum_{i=1}^{n} n \binom{n-1}{i-1} p^{i} (1-p)^{n-i} \\ &= np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i} \\ &= np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1-p)^{n-1-j} \\ &= np (p+(1-p))^{n-1} = np \end{aligned}$$

REPEATED COIN FLIPPING n times independently

Flip a biased coin with probability p of coming up Heads n times.

X is number of Heads. $X = X_1 + X_2 + \cdots$ What is E(X)? $E(X_i) = \Pr(i^{th} flip is H) = \Pr(X_i) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ $E(X) = E(X_1 + X_n) = E(X_1) + E(X_n) + \dots + E(X_n)$

PAIRS WITH SAME BIRTHDAY In a class of m students, on average how many pairs of

In a class of m students, on average how many pairs or people have the same birthday?

$$E(X_{ij}) = Pr(shout i & shout j have some boday).$$

$$= \begin{bmatrix} 365 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} Pr(shout i & los boday & day & day & day \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 1 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 2 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & onday \\ 3 & shout & j & have & boday & j & have & boday & j \\ 3 & shout & j & shout & j & have & boday & j & have & j \\ 3 & shout & j & have & j & have & j & have & j \\ 3 & shout & j & shout & j & have & j & have & j \\ 3 & shout & j & shout & j & have & j & have & j & have & j & have & j \\ 3 & shout & j & shout & j & have & j & have & j \\ 3 & shout & j & shout & j & have & j & have & j & have & j & have & j \\ 3 & shout & j & shout & j & have &$$

