PROBABILITY 3.1 Discrete Random Variables Basics

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- INTRO TO DISCRETE RANDOM VARIABLES
- PROBABILITY MASS FUNCTIONS
- CUMULATIVE DISTRIBUTION FUNCTION
- EXPECTATION

FLIPPING TWO COINS

 $\Omega = \{HH, HT, TH, TT\}$

Let X be the number of heads in two independent flips of a fair coin.

X is a function, $X: \Omega \to \mathbb{R}$ which takes outcomes $\omega \in \Omega$ and maps them to a number.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

$$|support d X| = (J x)$$

a) 20³
b) 20
c) 18
d) $\binom{20}{3}$

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

If Ω_X is finite or countably infinite (typically integers or a subset), X is a <u>discrete</u> random variable (drv). Else if Ω_X is uncountably large (the size of real numbers), X is <u>continuous</u> random variable.

IDENTIFY THOSE RVS

For each of the following random variables, identify its range Ω_X and whether it is discrete or continuous.

RV Description	Range	drv or crv?
The number of heads in n flips of a fair	oogene on model and an and	
coin.		
The number of people born this year.		
The number of flips of a fair coin up to		
and including my first head.		
The amount of time I wait for the next		
bus in seconds.		
Which cont. Which has	Range {1	12,3,
2		a)
6		6
د ن		cj
6)		6)

RANDOM PICTURE

FLIPPING TWO COINS

$$\Omega = \{HH, HT, TH, TT\}$$

$$X(HH) = 2 \qquad X(HT) = 1 \qquad X(TH) = 1 \qquad X(TT) = 0$$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

FLIPPING TWO COINS

$$\Omega = \{HH, HT, TH, TT\}$$

$$X(HH) = 2 \qquad X(HT) = 1 \qquad X(TH) = 1 \qquad X(TT) = 0$$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

$$p_X(k) = \begin{cases} k = 0 \\ k = 1 \\ k = 2 \end{cases}$$

6

FLIPPING TWO COINS

$$\Omega = \{HH, HT, TH, TT\}$$

$$X(HH) = 2 \qquad X(HT) = 1 \qquad X(TH) = 1 \qquad X(TT) = 0$$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

$$p_X(k) = \begin{cases} 1/4, & k = 0 \\ 1/2, & k = 1 \\ 1/4, & k = 2 \end{cases}$$

A.

PROBABILITY MASS FUNCTION (PMF)

The **probability mass function (pmf)** of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number.

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number. Hence,

$$\sum_{z\in\Omega_X}p_X(z)=1$$

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.
- Pr (X = 20)
- Pr (X = 18)

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The cumulative distribution function (CDF) of a random variable $F_X(x)$ specifies for each possible real number x, the probability that $X\leq x,$ that is

$$F_X(x) = P(X \le x)$$

Ex: if X has probability mass function given by:

$$p(1) = \frac{1}{4}$$
 $p(2) = \frac{1}{2}$ $p(3) = \frac{1}{8}$ $p(4) = \frac{1}{8}$

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{4} & 1 \le a < 2 \\ \frac{3}{4} & 2 \le a < 3 \\ \frac{7}{8} & 3 \le a < 4 \\ 1 & 4 \le a \end{cases} \xrightarrow{F(a)} - cdf \\ - cdf \\ - pmf \\ \frac{1}{4} \\ - \frac{1}{2} \\ - \frac{1}{$$

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework

Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	3 2 1	1

FLIPPING TWO COINS

What is the expected number of heads in 2 flips of a fair coin?

EXPECTATION

The <u>expectation/expected value/average</u> of a discrete random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Or equivalently,

$$E[X] = \sum_{k \in \Omega_X} k \cdot p_X(k)$$

The interpretation is that we take an average of the values in Ω_X , but weighted by their probabilities.

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework
- What is E(X)?

Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	321	1

 $E(X) = \sum_{u \in \mathcal{I}} \chi(u) P(u)$ = $\chi(u_{23})P(u_{33}) + \chi(u_{33})P(u_{33}) + \chi(u_{33})P(u_{33})P(u_{33}) + \chi(u_{33})P(u_{33})P(u_{33})P(u_{33}) + \chi(u_{33})P(u_{3$

FLIP A BIASED COIN UNTIL GET HEADS (FLIPS INDEPENDENT)

With probability p of coming up heads Keep flipping until the first Heads observed.

Let X be the number of flips until done.

- Pr(X = 1)
- Pr(X = 2)
- Pr(X = k)

FLIP A BIASED COIN UNTIL GET HEADS (FLIPS INDEPENDENT)

With probability p of coming up heads Keep flipping until the first Heads observed.

Let X be the number of flips until done. What is E(X)?

FLIP A BIASED COIN INDEPENDENTLY

Probability p of coming up heads, n coin flips
X: number of Heads observed.

• Pr(X = k)

a) $\binom{n}{k} p^{k}$ b) $p^{k} (1-p)'$ c) $\binom{n}{k} (1-p)'$

REPEATED COIN FLIPPING

Flip a biased coin with probability p of coming up Heads n times. Each flip independent of all others.

X is number of Heads.

What is E(X)?

n=20 p=5

REPEATED COIN FLIPPING

Flip a biased coin with probability p of coming up Heads n times. $E[X] = \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$

X is number of Heads.

What is E(X)?

$$\begin{aligned} X] &= \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} \\ &= \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} \\ &= \sum_{i=1}^{n} n \binom{n-1}{i-1} p^{i} (1-p)^{n-i} \\ &= np \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i} \\ &= np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1-p)^{n-1-j} \\ &= np (p+(1-p))^{n-1} = np \end{aligned}$$

FLIP A FAIR COIN INDEPENDENTLY

PROBABILITY 3.2 More on Expectation

ALEX TSUN

AGENDA

- LINEARITY OF EXPECTATION (LOE)
- LAW OF THE UNCONSCIOUS STATISTICIAN (LOTUS)

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? $\begin{bmatrix} [2] = E[X + Y] = \begin{bmatrix} [X + Y] \end{bmatrix} = \begin{bmatrix} [X$

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? $\begin{bmatrix} [2] = E[X + Y] = \begin{bmatrix} [X + Y] \end{bmatrix} = \begin{bmatrix} [X$

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? E[2] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How MUCH PROFIT DO YOU EXPECT TO MAKE? E[52 - 20] =

LET'S SAY YOU AND YOUR FRIEND SELL FISH FOR A LIVING.

- EVERY DAY YOU CATCH X FISH, WITH E[X] = 3.
- EVERY DAY YOUR FRIEND CATCHES **Y** FISH, WITH E[Y] = 7.

HOW MANY FISH DO THE TWO OF YOU BRING IN (2 = X + Y) on an average day? E[2] = E[X + Y] = E[X] + E[Y] = 3 + 7 = 10You can sell each fish for \$5 at a store, but you need to pay \$20 in rent. How

MUCH PROFIT DO YOU EXPECT TO MAKE? $E[52 - 20] = 5E[7] - 20 = 5 \times 10 - 20 = 30$

Linearity of Expectation: Let Ω be the sample space of an experiment, $X, Y: \Omega \to \mathbb{R}$ be (possibly "dependent") random variables both defined on Ω , and $a, b, c \in \mathbb{R}$ be scalars. Then,

$$E[X+Y] = E[X] + E[Y]$$

and

$$E[aX+b] = aE[X]+b$$

Combining them gives,

E[aX + bY + c] = aE[X] + bE[Y] + c

LINEARITY OF EXPECTATION (PROOF)

$$E[X] + E[Y] = \sum_{\omega \in \Omega} X(\omega)P(\omega) + \sum_{\omega \in \Omega} Y(\omega)P(\omega)$$

$$= \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))P(\omega)$$

$$= \sum_{\omega \in \Omega} (X + Y)(\omega)P(\omega)$$

$$= E[X + Y]$$