Anonymous questions

PROBABILITY 3.1 DISCRETE RANDOM VARIABLES BASICS

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- INTRO TO DISCRETE RANDOM VARIABLES
- PROBABILITY MASS FUNCTIONS
- CUMULATIVE DISTRIBUTION FUNCTION
- EXPECTATION

FLIPPING TWO COINS

$$\Omega = \{HH, HT, TH, TT\}$$

Let X be the number of heads in two independent flips of a fair coin.

X is a function, $X:\Omega \to \mathbb{R}$ which takes outcomes $\omega \in \Omega$ and maps them to a number.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

20 BALLS NUMBERED 1..20

I: unordendsubsets of 3 balls
$$P(\omega) = \frac{1}{|\Omega|} = \frac{1}{\binom{20}{3}}$$

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

$$X(3,5,7) = 7$$

 $X(3,8,15) = 15$

$$|supportdX| = |S|_X$$

$$\begin{array}{c} c) & 18 \\ c) & (3) \\ \end{array}$$

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

If Ω_X is finite or countably infinite (typically integers or a subset), X is a <u>discrete</u> random variable (drv). Else if Ω_X is uncountably large (the size of real numbers), X is <u>continuous</u> random variable.

IDENTIFY THOSE RVS

For each of the following random variables, identify its range Ω_X and whether it is discrete or continuous.

RV Description	Range	drv or crv?
The number of heads in n flips of a fair coin.	80,1,2,,n3	921
The number of people born this year.	10,112,	drv
The number of flips of a fair coin up to and including my first head.	11,2,3,3	gur
The amount of time I wait for the next bus in seconds.	(00,0)	Crv
Which cont. Which has	Range \$1,	1,3, <u>}</u>

RANDOM PICTURE

$$\Omega = \{HH, HT, TH, TT\}$$

 $X(HH) = 2$ $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

$$p_X(k) = P(X = k)$$

FLIPPING TWO COINS

$$\Omega = \{HH, HT, TH, TT\}$$

 $X(HH) = 2$ $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

$$p_X(k) = P(X = k)$$

$$p_X(k) = \begin{cases} k = 0 \\ k = 1 \\ k = 2 \end{cases}$$

$$\Omega = \{HH, HT, TH, TT\}$$

 $X(HH) = 2$ $X(HT) = 1$ $X(TH) = 1$ $X(TT) = 0$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

$$p_X(k) = P(X = k)$$

$$p_X(k) = \begin{cases} 1/4, & k = 0 \\ 1/2, & k = 1 \\ 1/4, & k = 2 \end{cases}$$

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k) = P(\{\omega\} X(\omega) = k\}$$

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number.

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number. Hence,

$$\sum_{z \in \Omega_X} p_X(z) = 1$$

$$\rho(X=z) = \rho(\{\omega\} \times \{\omega\} = z\})$$

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

•
$$Pr(X = 20)$$

•
$$Pr(X = 18)$$

$$\{X=20\} = \{w \mid mox ball \ is \ 20\}$$

$$P(X=20) = \frac{\{20\}}{(30)} = \frac{(30)}{(30)}$$

$$P_X(k) = P(X=k) = \begin{cases} 1/3 \\ 0 \end{cases}$$
 of there is

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The cumulative distribution function (CDF) of a random variable $F_X(x)$ specifies for each possible real number x, the probability that $X \leq x$, that is

$$F_X(x) = P(X \le x)$$

Ex: if X has probability mass function given by:

$$p(1) = \frac{1}{4}$$
 $p(2) = \frac{1}{2}$ $p(3) = \frac{1}{8}$ $p(4) = \frac{1}{8}$

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{4} & 1 \le a < 2 \\ \frac{3}{4} & 2 \le a < 3 \\ \frac{7}{8} & 3 \le a < 4 \\ 1 & 4 \le a \end{cases}$$

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework

Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	2 1 3	1
1/6	2 3 1	0
1/6	3 1 2	0
1/6	321	1

FLIPPING TWO COINS

What is the expected number of heads in 2 flips of a fair coin?

$$E(X) = O \cdot Pr(X=0) + 1 \cdot Pr(X=1) + 2 \cdot P(X=2)$$

expected value =
$$0.4 + 1.2 + 2.4 = 1$$

N X(w)

$$E(X) = X(TT)P(TT) + X(HT)P(HT)$$

$$+ X(TH)P(TW) + X(HH)P(HH)$$

EXPECTATION

The <u>expectation/expected value/average</u> of a discrete random variable X is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Or equivalently,

$$E[X] = \sum_{k \in \Omega_X} k \cdot p_X(k)$$

The interpretation is that we take an average of the values in Ω_X , but weighted by their probabilities.

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework
- What is E(X)?

	·	
Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	3 1 2	0
1/6	3 2 1	1

$$E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) + 3 \cdot 4$$

$$= 0 \cdot 3 + 1 \cdot 3 + 3 \cdot 4$$

$$= 1$$

$$E(X) = \sum_{\omega \in X} \chi(\omega) P(\omega)$$

$$= \chi(123)P(123) + \chi(132)P(132) + \chi(213)P(213) + \chi(321)P(321) + \chi(231)P(231) + \chi(312)P(312)$$

$$h=0000 E(X) = \sum_{k=0}^{\infty} k Pr(X=k)$$

FLIP A BIASED COIN UNTIL GET HEADS (FLIPS INDEPENDENT)

With probability p of coming up heads
Keep flipping until the first Heads observed.

Let X be the number of flips until done.

•
$$Pr(X = 2) = (1-p)p$$

•
$$Pr(X = k) = ((-p)^{k-1})^{k}$$

NX: set & nother X to mis

FLIP A BIASED COIN UNTIL GET HEADS (FLIPS INDEPENDENT)

With probability p of coming up heads
Keep flipping until the first Heads observed.

Let X be the number of flips until done. What is E(X)?

$$E(X) = \sum_{k=1}^{\infty} k \frac{Pr(X=k)}{P} = \frac{1}{P}$$

$$= \sum_{k=1}^{\infty} k \frac{(1-p)^k}{P} = \frac{1}{P}$$
wha: