PROBABILITY 2.3 INDEPENDENCE

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- CHAIN RULE
- INDEPENDENCE
- CONDITIONAL INDEPENDENCE

HAVE A STANDARD 52-CARD Deck.

- 4 SUITS (CLUBS, DIAMONDS, HEARTS, SPADES)
- 13 RANKS (A, 2, 3, ..., 9, 10, J, Q, K)

A ÷	÷		2 *	٠		3 4	÷		4 . *	÷	5 .	* *	\$ *	* *	?* *	÷.,	÷		9 ***	* * *	⁰ ***			K.
		¥		÷	Ż		۴	ŧ	÷	÷;	*	÷,	*	Ťĝ	÷	÷į	*	•8	+	6	÷÷	le di	N - 5	1 and a start of the start of t
A ♦			2 •	۰		3 ♦	<u>ب</u>		4 ♠	۰	5 ♠	•	∲. ♦	♦	₹ ♠		* ●		9 •	•		-	₽	*
L		Ŷ		۴	ŝ		Ŷ	÷	Ý	۴ţ	•	¢¢	•	¢∳	Ý	۰ţ	•	•	÷	• 6	** *		87.	N
¢	¥		2	۲		3 ♥	•		4♥	۲	Ş•	•	0 ♥ ♥	•	₹ •	•	8						9 •	
L		\$	L	٠	ĉ	L	٠	\$	٠	•;		¢¢		\$	•	•2		•		≜ 6			8	
÷	٠	÷	*	•	ż	3 +	* * *	•9	‡ ∙	• •;	5.	•••	€ • •	• • •;	₹• • •	•••		8	•	•	10 0			

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS. (UNIFORM PROBABILITY SPACE).

WHAT IS P

A: ACE OF SPADES FIRST **B**: 10 OF CLUBS SECOND **C**: 4 OF DIAMONDS THIRD

CHAIN RULE

<u>Chain Rule</u>: Let A_1, \ldots, A_n be events with nonzero probability. Then,

 $P(A_1, \dots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2) \dots P(A_n|A_1, \dots, A_{n-1})$

In the case of two events A, B,

P(A,B) = P(A)P(B|A)

An easy way to remember this formula: we need to do n tasks, so we can perform them one at a time, conditioning on what we've done so far.

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS. (UNIFORM PROBABILITY SPACE).

WHAT IS P

A: ACE OF SPADES FIRST **B**: 10 OF CLUBS SECOND **C**: 4 OF DIAMONDS THIRD

FUN WITH CARDS

Two people, A and B, are playing the following game. A 6-sided die is thrown and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers If it shows 5, A wins. If it shows 1, 2 or 6, B wins. Otherwise, they play a second round and so on.

What is Pr(A wins on 4th round)?

THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

The chain rule says

P(A,B) = P(A)P(B|A)

So no, unless the special case when P(B|A) = P(B). This case is so important it has a name.

INDEPENDENCE

Independence: Events A, B are independent if any of the three equivalent conditions hold:

1. P(A|B) = P(A)**2.** P(B|A) = P(B)**3.** P(A,B) = P(A)P(B)

INDEPENDENCE

Toss a coin 3 times. Each of 8 outcomes equally likely.
 Define

- A = {at most one T} = {HHH, HHT, HTH, THH}
- B = {at most 2 Heads}= {HHH}^c
- Are A and B independent?

NETWORK COMMUNICATION

EACH LINK WORKS WITH THE PROBABILITY GIVEN, **INDEPENDENTLY**. WHAT'S THE PROBABILITY A AND D CAN COMMUNICATE?

NETWORK COMMUNICATION

EACH LINK WORKS WITH THE PROBABILITY GIVEN, **INDEPENDENTLY**. WHAT'S THE PROBABILITY A AND D CAN COMMUNICATE?

$$P(top) = P(AB \cap BD) = P(AB)P(BD) = pq$$

$$P(bottom) = P(AC \cap CD) = P(AC)P(CD) = rs$$

 $P(top \cup bottom) = P(top) + P(bottom) - P(top \cap bottom)$ = P(top) + P(bottom) - P(top)P(bottom) = pq + rs - pqrs

USING INDEPENDENCE TO DEFINE A PROBABILISTIC MODEL

- We can **define** our probability model via independence.
- Example: suppose a biased coin comes up heads with probability 2/3, independent of other flips.
- Sample space: sequences of 3 coin tosses.
- Pr (HHH)=?
- Pr (TTT) = ?
- Pr (HHT) = ?
- Pr (HTH) = ?
- Pr (2 heads) = ?

PROBABILITY 3.1 DISCRETE RANDOM VARIABLES BASICS

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- INTRO TO DISCRETE RANDOM VARIABLES
- PROBABILITY MASS FUNCTIONS
- CUMULATIVE DISTRIBUTION FUNCTION

$\Omega = \{HH, HT, TH, TT\}$

Let X be the number of heads in two independent flips of a fair coin.

$\Omega = \{HH, HT, TH, TT\}$

Let X be the number of heads in two independent flips of a fair coin.

X is a function, $X: \Omega \to \mathbb{R}$ which takes outcomes $\omega \in \Omega$ and maps them to a number.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .

If Ω_X is finite or countably infinite (typically integers or a subset), X is a <u>discrete</u> random variable (drv). Else if Ω_X is uncountably large (the size of real numbers), X is <u>continuous</u> random variable.

IDENTIFY THOSE RVS

For each of the following random variables, identify its range Ω_X and whether it is discrete or continuous.

RV DescriptionRangedrv or crv?The number of heads in n flips of a fair
coin.''The number of people born this year.'The number of flips of a fair coin up to
and including my first head.'The amount of time I wait for the next
bus in seconds.

RANDOM PICTURE

 $\Omega = \{HH, HT, TH, TT\}$ $X(HH) = 2 \qquad X(HT) = 1 \qquad X(TH) = 1 \qquad X(TT) = 0$

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

$$\Omega = \{HH, HT, TH, TT\}$$

X(HH) = 2 X(HT) = 1 X(TH) = 1 X(TT) = 0

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

$$\Omega = \{HH, HT, TH, TT\}$$

X(HH) = 2 X(HT) = 1 X(TH) = 1 X(TT) = 0

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

$$p_X(k) = \begin{cases} k = 0 \\ k = 1 \\ k = 2 \end{cases}$$

$$\Omega = \{HH, HT, TH, TT\}$$

X(HH) = 2 X(HT) = 1 X(TH) = 1 X(TT) = 0

What is the support/range Ω_X ? $\Omega_X = \{0, 1, 2\}$

But what are the probabilities X takes on these values? For this, we define the **probability mass function (pmf)** of X, as $p_X: \Omega_X \to [0,1]$

 $p_X(k) = P(X = k)$

$$p_X(k) = \begin{cases} 1/4, & k = 0\\ 1/2, & k = 1\\ 1/4, & k = 2 \end{cases}$$

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number.

PROBABILITY MASS FUNCTION (PMF)

The <u>probability mass function (pmf)</u> of a discrete random variable X assigns probabilities to the possible values of the random variable. That is, $p_X: \Omega_X \to [0,1]$ where

$$p_X(k) = P(X = k)$$

Note that $\{X = a\}$ for $a \in \Omega_X$ form a partition of Ω , since each outcome $\omega \in \Omega$ is mapped to exactly one number. Hence,

$$\sum_{z\in\Omega_X}p_X(z)=1$$

20 BALLS NUMBERED 1..20

- Draw a subset of 3 uniformly at random.
- Let X = maximum of the numbers on the 3 balls.
- Pr (X =20)
- Pr (X = 18)
- Pr (X < 17)

FLIP A BIASED COIN UNTIL GET HEADS (FLIPS INDEPENDENT)

With probability p of coming up heads Keep flipping until the first Heads observed.

Let X be the number of flips until done.

- Pr(X = 1)
- Pr(X = 2)
- Pr(X = k)

FLIP A BIASED COIN INDEPENDENTLY

Probability p of coming up heads, n coin flips
X: number of Heads observed.

• Pr(X = k)

FLIP A BIASED COIN INDEPENDENTLY

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The cumulative distribution function (CDF) of a random variable $F_X(x)$ specifies for each possible real number x, the probability that $X \leq k$, that is

$$F_X(x) = P(X \le k)$$

Ex: if X has probability mass function given by:

$$p(1) = \frac{1}{4}$$
 $p(2) = \frac{1}{2}$ $p(3) = \frac{1}{8}$ $p(4) = \frac{1}{8}$

HOMEWORKS OF 3 STUDENTS RETURNED RANDOMLY

- Each permutation equally likely
- X: # people who get their own homework

Prob	Outcome w	X(w)
1/6	123	3
1/6	132	1
1/6	213	1
1/6	231	0
1/6	312	0
1/6	321	1