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CHAIN RULE (IDEA)
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CHAIN RULE (IDEA)
AVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.
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CHAIN RULE (IDEA)
AVE A STANDARD 52-CARD DECK. SHUFFLE I, AND DRAW THE TOP 3 CARDS.
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CHAIN RULE (IDEA)

HAVE A STANDARD 52-CARD DECK. SHUFFLE 1T, AND DRAW THE TOP 3 CARDS,

(UNTFORM PROBABILITY SPACE).
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CHAIN RULE

Chain Rule: Let 4;, ..., A, be events with nonzero probability. Then,
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In the case of two events A, B, @) P\')“ P(ANG
o (3

P(4,B) = P(A)P(B|A) <

An easy way to remember this formula: we need to do n tasks, so we
can perform them one at a time, conditioning on what we've done so far.
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FUN WITH CARDS

Two people, A and B, are playing the following game.

A 6-sided die is thrown and each time it’s thrown, regardless of the history, it dis
equally likely to show any of the six numbers

If it shows 5, A wins.

If it shows 1, 2 or 6, B wins.

Otherwise, they play a second round and so on.
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What is Pr(A wins on 4t round)?
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THE NEED FOR INDEPENDENCE

Quick question: In general, is

p(M\e;)-. P(4,B) = P(A)P(B)?



THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

The chain rule says

P(4,B) = P(A)P(B|A)

So no, unless the special case when P(B|A) = P(B). This case is so
important it has a name.



[NDEPENDENCE

Independence: Events A, B are independent if any of the three
equivalent conditions hold:

1. P(A|B) = P(4)
2. P(B|A) = P(B)
3. P(A4,B) = P(A)P(B)




[NDEPENDENCE

® Toss a coin 3 times. Each of 8 outcomes equally likely.
Define

e A
e B

{at most one T} = {HHH, HHT, HTH, THH}
{at most 2 Heads}= {HHH}c

® Are A and B -independent?
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NETWORK COMMUNICATION

LACH LINK WORKS WITH THE PROBABILITY
GLVEN, INDEPENDENTLY. WHAT'S THE
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NETWORK COMMUNICATION

LACH LINK WORKS WITH THE PROBABILITY
GIVEN, INDEPENDENTLY. WHAT'S THE
PROBABTLITY A AND D CAN COMMUNTCATE!

P(top) = P(AB n BD) = P(AB)P(BD) = nq
P(bottom) = P(AC N CD) = P(AC)P(CD) =rs

P(top U bottom) = P(top) + P(bottom) — P(top N bottom)
= P(top) + P(bottom) — P(top)P(bottom)
=pq+rs—pqrs



USING INDEPENDENCE TO DEFINE A PROBABILISTIC MODEL

We can define our probability model via -independence.

Example: suppose a biased coin comes up heads with
probability 2/3, 1independent of other flips.
e .

Sample space: sequences of 3 coin tosses. Sl.:i“;r?
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=P (#7) + P 1w) + P(THH)
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3.1 DISCRETE RANDOM VARIABLES BASICS




AGENDA

o [NTROTO DISCRETE RANDOM VARTABLES
o ROBABILITY MASS FUNCTIONS
o [UMULATIVE DISTRIBUTION FUNCTION



FLIPPING TWO COINS

Q = {HH,HT,TH,TT}

Let X be the number of heads in two independent flips of a fair coin.
roardown vorablg



FLIPPING TWO COINS

Q = {HH,HT,TH,TT}

Let X be the number of heads in two independent flips of a fair coin.

X is a function, X: Q - R which takes outcomes w € Q and maps them to

a humber. .
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RANDOM VARTABLE

Suppose we conduct an experiment with sample space (). A random
variable (rv) is a numeric function of the outcome, X: Q - R. That is, it
maps outcomes w € Q. to numbers, w - X(w).




RANDOM VARTABLE

Suppose we conduct an experiment with sample space (). A random
variable (rv) is a numeric function of the outcome, X:Q - R. That is, it
maps outcomes w € (. to numbers, w - X(w).

The set of possible values X can take on is its range/support, denoted
G,
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