PROBABILITY 2.3 INDEPENDENCE

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- CHAIN RULE
- INDEPENDENCE
- CONDITIONAL INDEPENDENCE not in class.

HAVE A STANDARD 52-CARD DECK.

- 4 SUITS (CLUBS, DIAMONDS, HEARTS, SPADES)
- 13 RANKS (A, 2, 3, ..., 9, 10, J, Q, K)

A ◆	*	*	2.	÷	ż	3	* * *	4 W	4**	* **	5.÷	+ + +*	\$* * *	*	7.4	**	**	***	****	****	····		K.
A ♦	¢	¥.	2.	* •	•2	3 ♠	*	• 00	4 ♠	۰ •;	5. ▲	* * **	5 • • •	 <!--</td--><td></td><td></td><td>**</td><td></td><td>9.4.4.4</td><td>****</td><td></td><td></td><td>K K K K K K K K K K K K K K K K K K K</td>			**		9.4.4.4	****			K K K K K K K K K K K K K K K K K K K
¢	٠	•	2	•	2	3	**	• 00	•	•	5.	•	\$• •	*	3		8.		9	*****			
A •	٠	÷	2.	•	•2	3.	•	• 04	* •	•	5	•	5 • •	• • •;	1		8.		9		10 • • • • •		

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS.

A: ACE OF SPADES FIRST) = P(A, B, C)? B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

 $P(A) \cdot P(B|A) \cdot P(C|A \cap B)$

HAVE A STANDARD 52-CARD DECK. SHUFFLE IT, AND DRAW THE TOP 3 CARDS. (UNIFORM PROBABILITY SPACE). A: ACE OF S

WHAT IS P (

A: ACE OF SPADES FIRST B: 10 OF CLUBS SECOND C: 4 OF DIAMONDS THIRD

CHAIN RULE

<u>Chain Rule</u>: Let A_1, \dots, A_n be events with nonzero probability. Then,

 $P(A_1, \dots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2) \dots P(A_n|A_1, \dots, A_{n-1})$

In the case of two events A, B,

 $P(B|A) = \frac{P(A \land B)}{P(A)}$

An easy way to remember this formula: we need to do n tasks, so we can perform them one at a time, conditioning on what we've done so far.

P(A,B) = P(A)P(B|A)

Two people, A and B, are playing the following game. A 6-sided die is thrown and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers If it shows 5, A wins. If it shows 1, 2 or 6, B wins. Otherwise, they play a second round and so on.

What is Pr(A wins on 4th round)?

will be on section worksheet use chain rule.

THE NEED FOR INDEPENDENCE

Quick question: In general, is

 $P(A \cap B) = P(A, B) = P(A)P(B)?$

THE NEED FOR INDEPENDENCE

Quick question: In general, is

P(A,B) = P(A)P(B)?

The chain rule says

P(A,B) = P(A)P(B|A)

So no, unless the special case when P(B|A) = P(B). This case is so important it has a name.

INDEPENDENCE

Independence: Events A, B are independent if any of the three equivalent conditions hold:

1. P(A|B) = P(A) **2.** P(B|A) = P(B)**3.** P(A,B) = P(A)P(B)

INDEPENDENCE

Toss a coin 3 times. Each of 8 outcomes equally likely.
 Define

- A = {at most one T} = {HHH, HHT, HTH, THH}
- B = {at most 2 Heads}= {HHH}^c

• Are A and B independent?

And =
$$\{HHT, HTH, THH\}$$

 $P(A) P(B) \neq P(AnB)$
 $nd indep.$

NETWORK COMMUNICATION A EACH LINK WORKS WITH THE PROBABILITY GIVEN, INDEPENDENTLY. WHAT'S THE PROBABILITY A AND D CAN COMMUNICATE? P(T)= P(ABNBD) T: top path works = P(AB) P(BD) B: bottom poits weks. = 99 = P(B) = r $P(3 \text{ working } P(T) = P(T \cup B) = P(T) + P(B) - P(T \cap B)$ = pg + rs - P(T) P(B) $\frac{Pr(ro pathweks)}{Pr(T \cap \overline{B})} = P(\overline{\tau})P(\overline{B}) = (1-pq)(1-rs)$

$P(0) \neq P(0|c) = 0$

NETWORK COMMUNICATION

EACH LINK WORKS WITH THE PROBABILITY GIVEN, **INDEPENDENTLY**. WHAT'S THE PROBABILITY A AND D CAN COMMUNICATE?

$$P(top) = P(AB \cap BD) = P(AB)P(BD) = pq$$

$$P(bottom) = P(AC \cap CD) = P(AC)P(CD) = rs$$

 $P(top \cup bottom) = P(top) + P(bottom) - P(top \cap bottom)$ = P(top) + P(bottom) - P(top)P(bottom) = pq + rs - pqrs

USING INDEPENDENCE TO DEFINE A PROBABILISTIC MODEL

• We can **define** our probability model via independence.

ANNA KARLIN Most slides by Alex Tsun

AGENDA

- INTRO TO DISCRETE RANDOM VARIABLES
- PROBABILITY MASS FUNCTIONS
- CUMULATIVE DISTRIBUTION FUNCTION

FLIPPING TWO COINS

$\Omega = \{HH, HT, TH, TT\}$

Let X be the number of heads in two independent flips of a fair coin.

FLIPPING TWO COINS

 $\Omega = \{HH, HT, TH, TT\}$

Let X be the number of heads in two independent flips of a fair coin.

X is a function, $X: \Omega \to \mathbb{R}$ which takes outcomes $\omega \in \Omega$ and maps them to a number. X(TT) X(TT

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

RANDOM VARIABLE

Suppose we conduct an experiment with sample space Ω . A <u>random</u> <u>variable (rv)</u> is a numeric function of the outcome, $X: \Omega \to \mathbb{R}$. That is, it maps outcomes $\omega \in \Omega$ to numbers, $\omega \mapsto X(\omega)$.

The set of possible values X can take on is its <u>range/support</u>, denoted Ω_X .