2. PROBABILITY INTRO TO DISCRETE PROBABILITY

ANNA KARLIN With many slides by Alex Tsun and CS70 at berkeley

AGENDA

- DEFINITIONS
- AXIOMS
- EQUALLY LIKELY OUTCOMES
- BEYOND EQUALLY LIKELY OUTCOMES
- CONDITIONAL PROBABILITY

DEFINITIONS

<u>Sample Space</u>: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: Ω = {1,2,3,4,5,6}

DEFINITIONS

<u>Sample Space</u>: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: Ω = {1,2,3,4,5,6}

Event: Any subset $E \subseteq \Omega$.

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number: $E = \{2,4,6\}$

DEFINITIONS

<u>Sample Space</u>: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: Ω = {1,2,3,4,5,6}
- **Event:** Any subset $E \subseteq \Omega$.
 - Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
 - Rolling an even number: $E = \{2,4,6\}$

<u>Mutually Exclusive</u>: Events E and F are mutually exclusive if $E \cap F = \emptyset$ (i.e., they can't simultaneously happen).

• $E = \{2,4,6\}$ and $F = \{1,3\}$, then $E \cap F = \emptyset$.

EXAMPLE: WEIRD DICE (SAMPLE SPACE)SUPPOSE I ROLL TWO 4-SIDED DICE. HERE IS THE SAMPLE SPACE (SET OF
POSSIBLE OUTCOMES)DIE 2 (RED)

]	2	3	4
1	(],])	(1,2)	(], 3)	(],4)
2	(2,1)	(2,2)	(2,3)	(2,4)
3	(3,1)	(3, 2)	(3,3)	(3,4)
4	(4,1)	(4, 2)	(4, 3)	(4,4)

EXAMPLE: WEIRD DICE (EVENTS) LET D1 BE THE VALUE OF THE BLUE DIE, AND D2 THE VALUE OF THE RED DIE. WHAT OUTCOMES MATCH THESE EVENTS? 📣 DIE 2 (RED) $\left[\right] = \left[\right]$]) 3 4 $\left[\right] + \left[\right] = 0$ B. (], 4)] (1, 1)(1, 2)(1, 3)D1 = 2 * D2(2, 3)2 (2, 4)(2, 1)(2, 2)DIE 1 (BLUE)

3

4

(3, 1)

(4, 1)

(3, 2)

(4, 2)

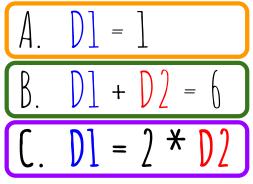
(3, 3)

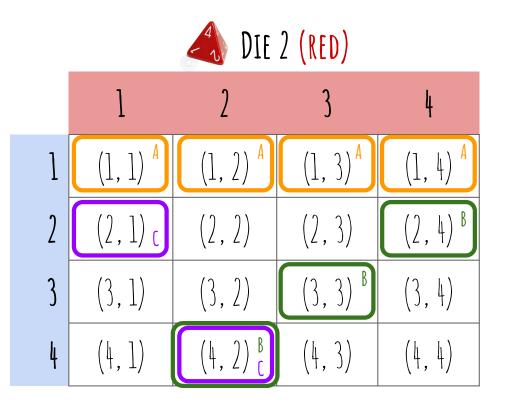
(4, 3)

(3, 4)

(4, 4)

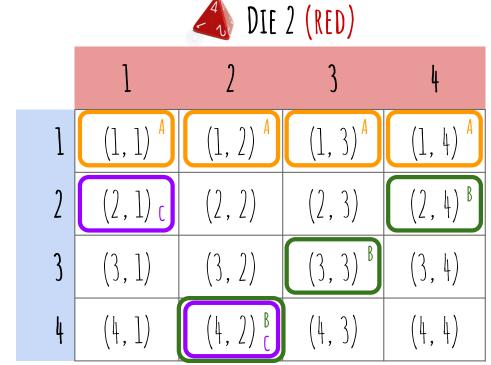
EXAMPLE: WEIRD DICE (EVENTS) Are **A** and **B** mutually exclusive? Are **B** and **C** mutually exclusive?





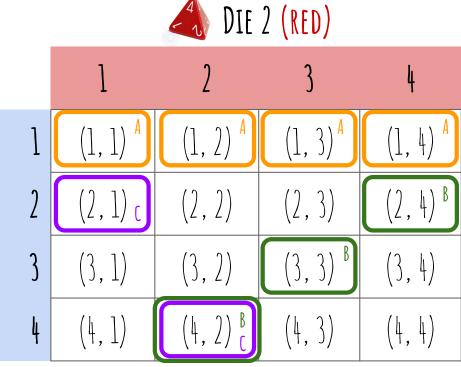
EXAMPLE: WEIRD DICE (MUTUALLY EXCLUSIVE)ARE A AND B MUTUALLY EXCLUSIVE?YES. $A \cap B = \emptyset$ (NO OVERLAP)

DIE 1 (BLUE)



EXAMPLE: WEIRD DICE (MUTUALLY EXCLUSIVE) ARE B AND C MUTUALLY EXCLUSIVE? NO. B AND C COULD HAPPEN AT THE SAME TIME (4, 2)

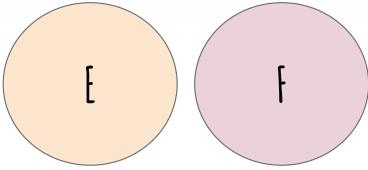
DIE 1 (BLUE)



RANDOM PICTURE

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

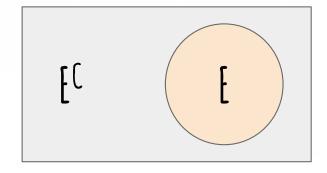
Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.



Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$.

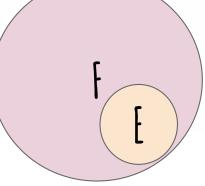


Ω

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

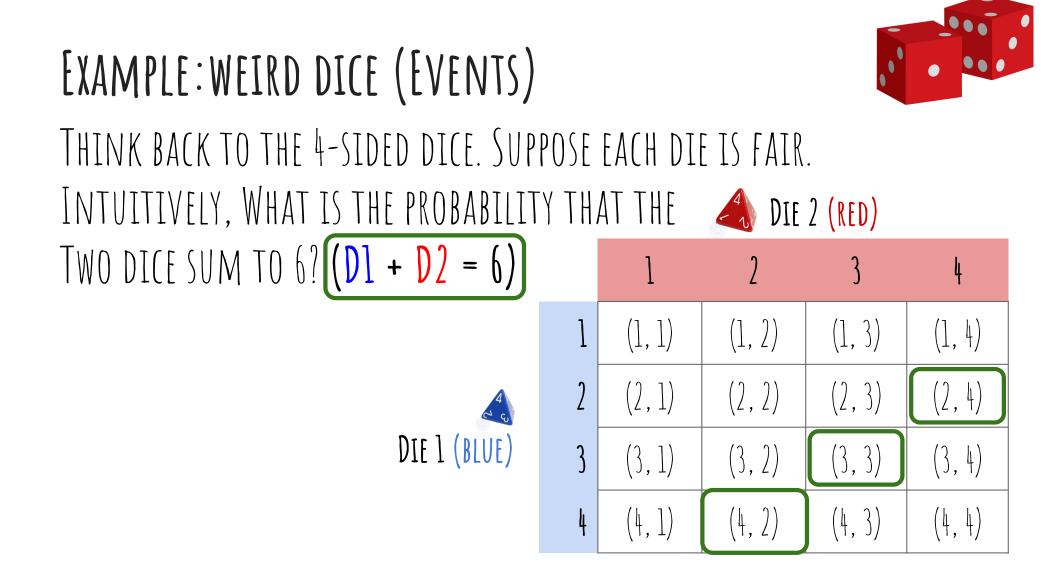
Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$.

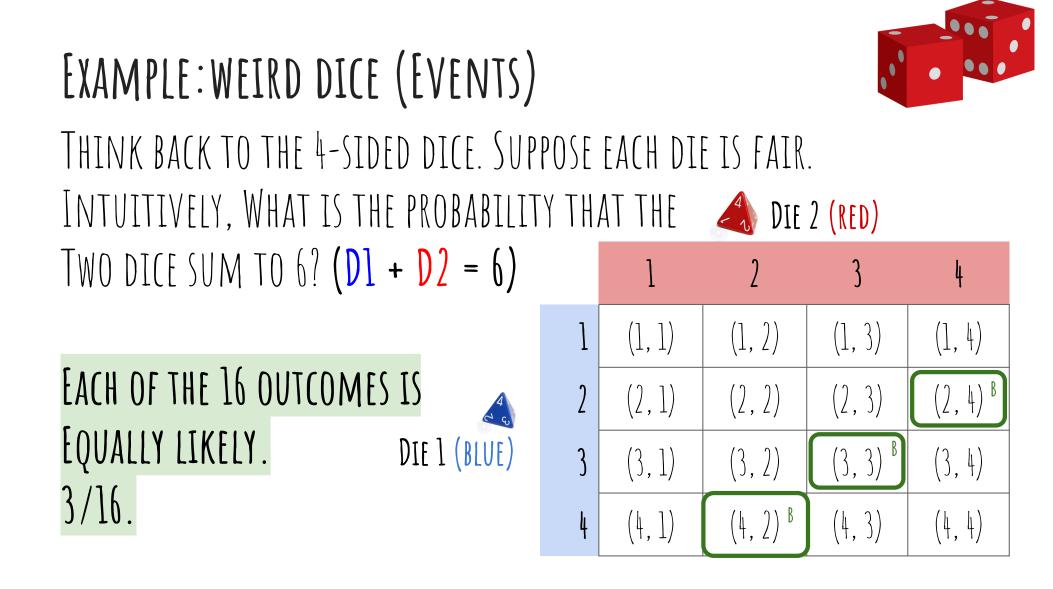


Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$. Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.





EQUALLY LIKELY OUTCOMES

If Ω is such that outcomes are equally likely, then for any event $E \subseteq \Omega$,

$$P(E) = \frac{|E|}{|\Omega|}$$

COIN TOSSING

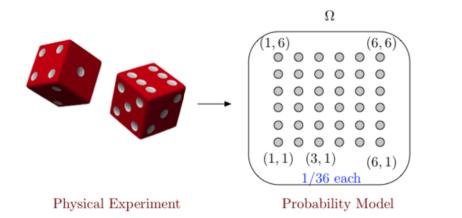
TOSS A COIN 100 TIMES. EACH OUTCOME IS EQUALLY LIKELY. WHAT IS THE PROBABILITY OF SEEING 50 HEADS?

Non-equally Likely outcomes

H: 45%

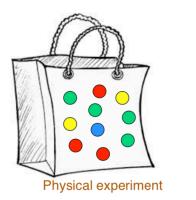
Glued coins

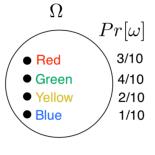
MORE EXAMPLES - UNIFORM PROBABILITY SPACES



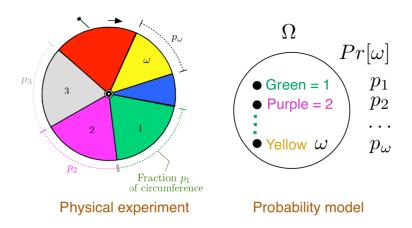


NONUNIFORM PROBABILITY SPACES





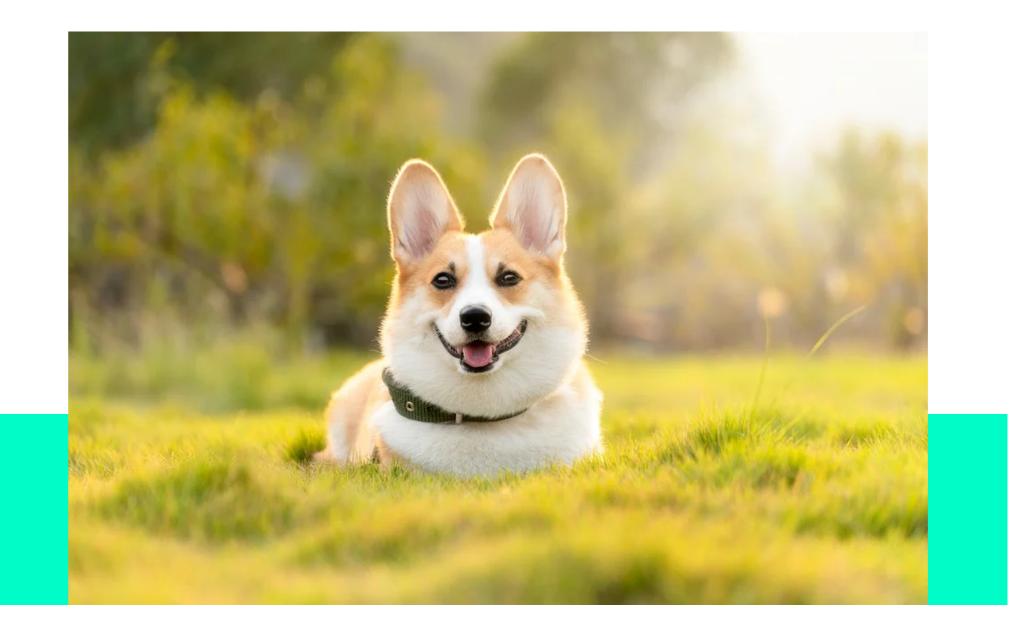
Probability model



Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

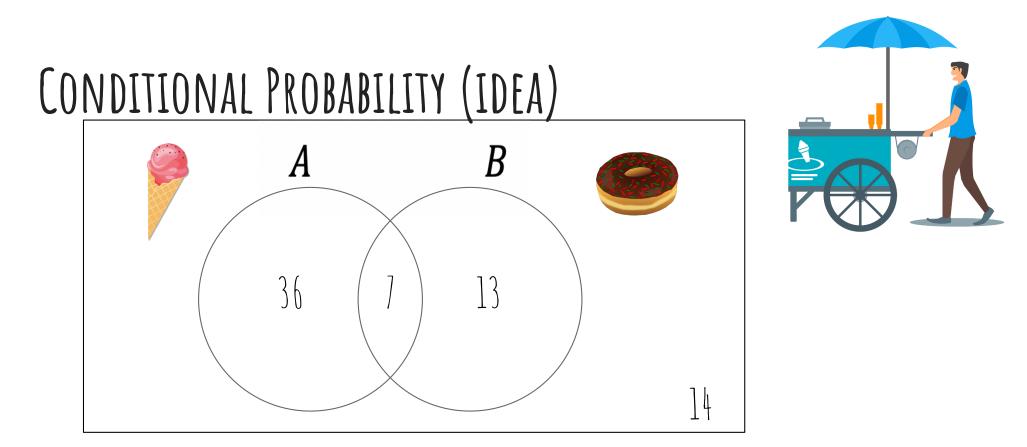
Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$. Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

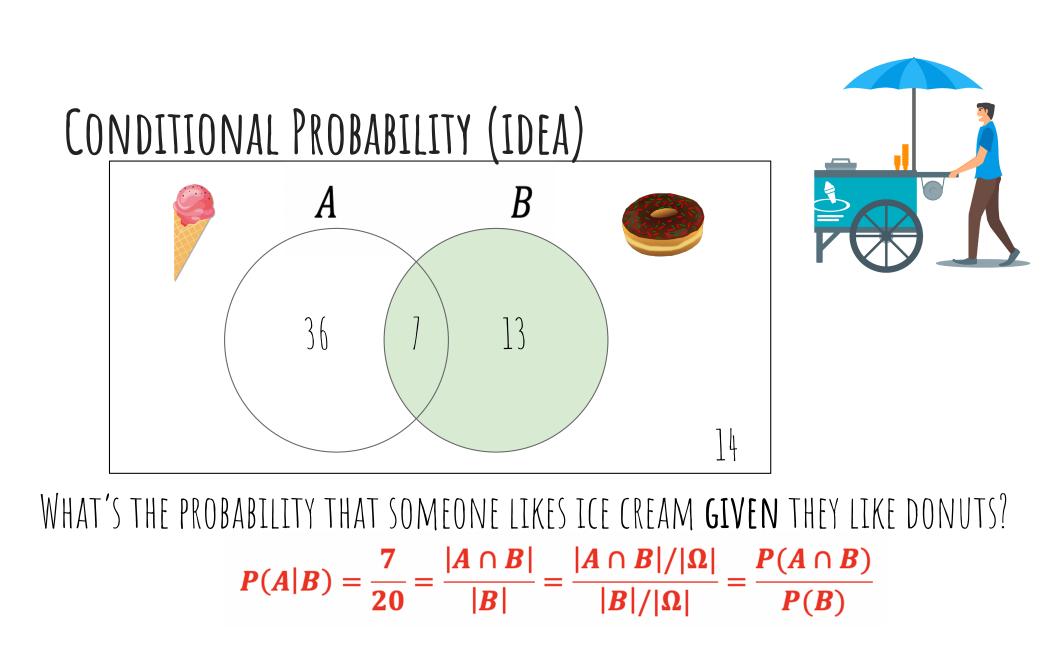


CONDITIONAL PROBABILITY

SLIDES MOSTLY BY ALEX TSUN



WHAT'S THE PROBABILITY THAT SOMEONE LIKES ICE CREAM **GIVEN** THEY LIKE DONUTS?

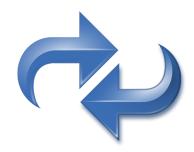


CONDITIONAL PROBABILITY

<u>Conditional Probability</u>: The (conditional) probability of A given an event B happened is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

An equivalent and useful formula is $P(A \cap B) = P(A|B)P(B)$.



CONDITIONAL PROBABILITY (REVERSAL)

Does P(A|B) = P(B|A)?



CONDITIONAL PROBABILITY (INTUITION)

Does P(A|B) = P(B|A)? No!!

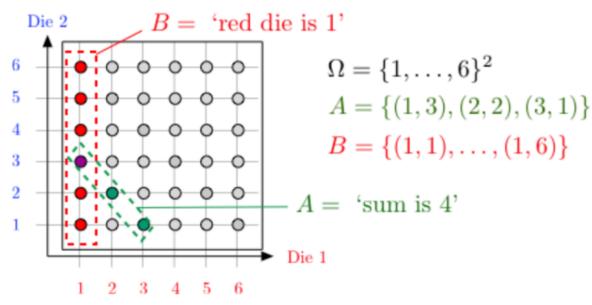
Let A be the event you are wet. Let B be the event you are swimming.

P(A|B) = 1 $P(B|A) \neq 1$

FUN WITH CONDITIONAL PROBABILITY

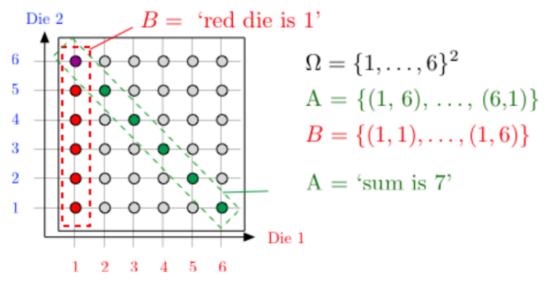
 Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)? What is Pr(B)?

 $\Omega: \text{ Uniform}$



FUN WITH CONDITIONAL PROBABILITY

 Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)?



GAMBLER'S FALLACY

- Flip a fair coin 51 times. All outcomes equally likely.
- A = "first 50 flips are heads"
- B = "the 51st flip is heads"
- Pr (B | A) = ?