Announcements • post à posted after lecture • partner finding form due by roon.

2. PROBABILITY INTRO TO DISCRETE PROBABILITY

ANNA KARLIN WITH MANY SLIDES BY ALEX TSUN AND CS70 AT BERKELEY

AGENDA

- DEFINITIONS
- AXIOMS
- EQUALLY LIKELY OUTCOMES
- BEYOND EQUALLY LIKELY OUTCOMES
- CONDITIONAL PROBABILITY

DEFINITIONS

Sample Space: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Event: Any subset $E \subseteq \Omega$.

- Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
- Rolling an even number: $E = \{2,4,6\}$

DEFINITIONS

Sample Space: The set Ω of all possible outcomes of an experiment.

- Single coin flip: $\Omega = \{H, T\}$
- Two coin flips: $\Omega = \{HH, HT, TH, TT\}$
- Roll of a die: Ω = {1,2,3,4,5,6}
- **Event:** Any subset $E \subseteq \Omega$.
 - Getting at least one head in two coin flips: $E = \{HH, HT, TH\}$
 - Rolling an even number: $E = \{2,4,6\}$

<u>Mutually Exclusive</u>: Events E and F are mutually exclusive if $E \cap F = \emptyset$

(i.e., they can't simultaneously happen).

• $E = \{2,4,6\}$ and $F = \{1,3\}$, then $E \cap F = \emptyset$.

EXAMPLE: WEIRD DICE (MUTUALLY EXCLUSIVE) Are A and B mutually exclusive? YES. A \cap B = \varnothing (NO OVERLAP)

EXAMPLE: WEIRD DICE (MUTUALLY EXCLUSIVE)ARE B AND C MUTUALLY EXCLUSIVE?NO. B AND C COULD HAPPEN AT THESAME TIME (4, 2)1

	📣 DIE 2 (RED)			
	1	2	3	4
1	(1,1) (1,1)	(1, 2) ^A	(1, 3) ^A	(], 4) A
2	(2, 1) c	(2,2)	(2,3)	(2,4) ^B
3	(3,1)	(3, 2)	(3,3) ^B	(3,4)
4	(4,])	(4, 2) ^B _C	(4, 3)	(4,4)

RANDOM PICTURE

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Ω

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$.

S=EUE

$$|=\Pr(J)=\Pr(E)+\Pr(E^{c})$$

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$.

P(F) = P(E) + P(F|E)

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^{C}) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$. Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

EQUALLY LIKELY OUTCOMES

If Ω is such that outcomes are equally likely, then for any event $E \subseteq \Omega$,

$$P(E) = \frac{|E|}{|\Omega|} = \frac{2}{|\Omega|} = \frac{|E|}{|\Omega|}$$

$$P(E) = \frac{|E|}{|\Omega|} = \frac{2}{|\Omega|} = \frac{|E|}{|\Omega|}$$

$$P(E) = \frac{1}{|\Omega|}$$

= all possible sequences of length 100 each elt Har T COIN TOSSING TOSS A COIN 100 TIMES. EACH OUTCOME IS . WHAT IS THE Prob (w)= 1 PROBABILITY OF SEEING 50 HEADS? $|\mathcal{V}| = g_{1\alpha 0}$ 50 (0) $|E| = \begin{pmatrix} 100 \\ 50 \end{pmatrix}$ E: S sequences 50 Hs E: fust coin lass is H now.

MORE EXAMPLES - UNIFORM PROBABILITY SPACES

NONUNIFORM PROBABILITY SPACES

Birthday Paradex. 365 days in a year U={1,2,...,365} drawing sample goize n from U with replacement = 2(b, b, ..., b,) b; eu 1621 6,1) ~~ eu I.S. Pr(w)= 0) 365 b) P(365, n) Pr(at least 2 people) with same birthday c) (365)d) 365° (= Pr(no 2 people have Same bdow

$$Pr(no \ 2 people \ love \\ same \ bday) = \frac{|A|}{|A|} \frac{|A| - ?}{|A|} \frac{|A| - ?}{|A| - ?}$$

$$= \frac{365 \cdot 364 - 865 - nt1}{365^{n}} \frac{|A|}{|A|} \frac{|A| - ?}{|A|} \frac$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{$$

n

n=23 Pr(athost bday) > 0.5 70.99 n = 30

> 365 people in loss Prot (cost 2 with same bday)

AXIOMS OF PROBABILITY & THEIR CONSEQUENCES

Let Ω denote the sample space and $E, F \subseteq \Omega$ be events.

Axiom 1 (Nonnegativity): $P(E) \ge 0$. Axiom 2 (Normalization): $P(\Omega) = 1$. Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then $P(E \cup F) = P(E) + P(F)$.

Corollary 1 (Complementation): $P(E^C) = 1 - P(E)$. Corollary 2 (Monotonicity): If $E \subseteq F$, $P(E) \leq P(F)$. Corollary 3 (Inclusion-Exclusion): $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

CONDITIONAL PROBABILITY

SLIDES MOSTLY BY ALEX TSUN

CONDITIONAL PROBABILITY

<u>Conditional Probability</u>: The (conditional) probability of A given an

event B happened is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

An equivalent and useful formula is $P(A \cap B) = P(A|B)P(B)$.

CONDITIONAL PROBABILITY (REVERSAL)

Does P(A|B) = P(B|A)?

CONDITIONAL PROBABILITY (INTUITION)

Does P(A|B) = P(B|A)? No!!

Let A be the event you are wet. Let B be the event you are swimming.

P(A|B) = 1 $P(B|A) \neq 1$

FUN WITH CONDITIONAL PROBABILITY

 Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)? What is Pr(B)?

 $\Omega: \text{ Uniform}$

FUN WITH CONDITIONAL PROBABILITY

 Toss a red die and a blue die. All outcomes equally likely. What is Pr(B | A)?

(b)

GAMBLER'S FALLACY

- Flip a fair coin 51 times. All outcomes equally likely.
- A = "first 50 flips are heads"
- B = "the 51st flip is heads"
- Pr (B | A) = ?