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AGENDA

o DEINITIONS

o JIOMS

® [(UALLY LIKELY QUTCOMES

® BEYOND EQUALLY LIKELY OUTCOMES
® (ONDITIONAL PROBABTLITY
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DEFINITIONS

Sample Space: The set Q o%ll possible outcomes of an experiment.
e Single coin flip: Q = {H, T} ~—
e Two coin flips:@Q = {HH,HT,TH,TT}
e Roll of adie: O = {1,2,3,4,5,6}
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DEFINITIONS

Sample Space: The set Q of all possible outcomes of an experiment.
e Single coin flip: O = {H, T} '
e Two coin flips: O ={HH, HT, TH,LT}

e Roll of a die: 0 = {1,2,3,4,5,6} @
Event: Any subset E € Q.

e Getting at least one head in two coin flips: E = {HH,HT, TH}

e Rolling an even number: E = {2,4,6}




DEFINITIONS

Sample Space: The set Q of all possible outcomes of an experiment.
e Single coin flip: O = {H, T} '
e Two coin flips: QO ={HH,HT,TH,TT}

e Roll of a die: Q = {1,2,3,4,5,6} @
Event: Any subset E c Q.

e Getting at least one head in two coin flips: E = {HH,HT, TH}

e Rolling an even number: E = {2,4,6}

Mutually Exclusive: Events E and F are mutually exclusive if ENF =@
(i.e., they can't simultaneously happen).
o E={246}and F = {1,3}, thenENnF = Q.




EXAMPLE: WETRD DICE (SAMPLE SPACE) m

SUPPOSE T ROLL TWO &-STDED DICE. HERE TS THE SAMPLE SPACE (SET OF
POSSIBLE OUTCOMES) &g (U
1 ) j !




EXAMPLE:WEIRD DICE (EVENTS) ‘

LET D1 BE THE VALUE OF THE BLUE DTE, AND D/ THE VALUE OF THE RED DIE.
WHAT OUTCOMES MATCH THESE EVENTS! 4 1t 1 (1)
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EXAMPLE:WEIRD DICE (EVENTS)
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EXAMPLE: WETRD DICE (EVENTS)
ARE A AND B MUTUALLY BYCLUSTVET

ARE B AND C MUTUALLY EXCLUSTVE! 4 it ) (100)
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EXAMPLE: WETRD DICE (MUTUALLY EXCLUSIVE)
ARE A AND B MUTUALLY BICLUSLVE!
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EXAMPLE: WEIRD DICE (MUTUALLY EXCLUSIVE)
ARE B AND C MUTUALLY EXCLUSIVE]

NO. BAND C COULD HAPPEN AT THE & 01t 1 (k)
SAME TIME (&, 1) A A T
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& A RV VY EEVRE AL
DEL(WE) 3| 5y | (6.0 [W] 3,4
VoY (2] wy | ey




RANDOM PICTURE




AXTOMS OF PROBABLLITY & THETR CONSEQUENCES

Let Qdenote the sample space and E, F < Q1 be events.

Axiom 1 (Nonnegativity): P(E) = 0.
Axiom 2 (Normalization): P(Q)) = 1.

Exiom 3 (Countable Additivity) If E and F are mutually exclusive, then
P

(EUF) =P(E) + P(F).
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AXTOMS OF PROBABLLITY & THETR CONSEQUENCES

Let Q denote the sample space and E, F < Q be events.

P‘. E_/'—% R)lo
xiom 1 (Nonnegativity): P(E) = 0.
xiom 2 (Normalization): P(Q) = 1. LO)\S
xiom 3 (Countable Additivity) If E and F are mutually exclusive, then
(EUF) = P(E) + P(F).

Corollary 1 (Complementation): P(E€) = 1 — P(E). i« @
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AXTOMS OF PROBABLLITY & THETR CONSEQUENCES

Let Q denote the sample space and E, F < Q be events.

Axiom 1 (Nonnegativity): P(E) = 0.

Axiom 2 (Normalization): P(Q)) = 1.

Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then
P(E UF) = P(E) + P(F).

Corollary 1 (Complementation): P(E¢) = 1 — P(E).
Corollary 2 (Monotonicity): If E € F, P(E) < P(F).

P(F) = P(E) + P(F\E)
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AXTOMS OF PROBABLLITY & THETR CONSEQUENCES

Let Q denote the sample space and E, F < Q be events.

Axiom 1 (Nonnegativity): P(E) = 0.

Axiom 2 (Normalization): P(Q)) = 1.

Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then

P(EUF) = P(E) + P(F). A e
—

Corollary 1 (Complementation): P(E¢) = 1 — P(E).

Corollary 2 (Monotonicity): If E € F, P(E) < P(F).

Corollary 3 (Inclusion-Exclusion): P(E UF) = P(E) + P(F) — P(E N F).



EXAMPLE:WEIRD DICE (EVENTS)

THINK BACK TO THE &-STDED DICE. SUPPOSE EACH DIE TS FATR.
INTUTTIVELY, WHAT TS THE PROBABILITY THAT THE 4 D1e 2 (xe)
TWO DICE SUM TO BT)(DL + D2 = 6) A A B
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EXAMPLE:WEIRD DICE (EVENTS)

THINK BACK TO THE &-STDED DTCE. SUPPOSE EACH DIE TS FATR.
INTUTTIVELY, WHAT TS THE PROBABILITY THAT THE 4 D1e 2 (xe)
TWO DICE SUM TO BT (DL + D2 =) A A B

L LY | L) Ly Ly
EACH OF THE 16 OUTCOMES IS 10 e |0y [FEw
EQUALLY LIKELY. DIELQBWE 3 (3.1 | (3.)) m 3,4
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FQUALLY LIKELY QUTCOMES

If Qis such that outcomes are equally likely, then for any event E € Q,
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QO TosING S = SRR
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MORE EXAMPLES — UNTFORM PROBABILITY SPACES

0 é .
Physical Experiment Probability Model Physioal experiment Probability model
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NONUNITFORM PROBABILITY SPACES

Physical experiment Probability model

Fraction p;
of circumference

Physical experiment

Prw]

® Green = 1 b1
® Purple =2 b2
® Velow W Duw

Probability model
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AXTOMS OF PROBABLLITY & THETR CONSEQUENCES

Let Q denote the sample space and E, F < Q be events.

Axiom 1 (Nonnegativity): P(E) = 0.

Axiom 2 (Normalization): P(Q)) = 1.

Axiom 3 (Countable Additivity) If E and F are mutually exclusive, then
P(EUF) = P(E) + P(F). A °

N
Corollary 1 (Complementation): P(E¢) = 1 — P(E).
Corollary 2 (Monotonicity): If E € F, P(E) < P(F).
Corollary 3 (Inclusion-Exclusion): P(E UF) = P(E) + P(F)— P(ENF).






CONDITIONAL PROBABILITY



CONDITIONAL PROBABILITY (IDEA)
A
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WHAT'S THE PROBABTLITY THAT SOMEONE LTKES TCE CREAM GIVEN THEY LIKE DONUTS!
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CONDITIONAL PROBABILITY (IDEA)

a
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WHAT'S THE PROBABTLLTY THAT SOMEONE LTKES TCE CREAM GIVEN THEY

P(A|B) = s

|A N B|

LTKE DONUTS!

|AnB|/|Q| P(ANB)
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CONDITIONAL PROBABILITY

Conditional Probability: The (conditional) probability of A given an
event B happened is

P(A N B) assu™y

P(B) P(®)#0

An equivalent and useful formula is P(A n B) = P(A|B)P(B).

P(A|B) =




CONDITIONAL PROBABILITY (REVERSAL @

Does P(A|B) = P(B|A)?



CONDITIONAL PROBABLLITY (INTUITION) @

Does P(A|B) = P(B|A)? Nol!

Let A be the event you are wet.
Let B be the event you are swimming.

P(A|B) =1

P(B|A) # 1



FUN WITH CONDITIONAL PROBABILITY

® Toss a red die and a blue die. All outcomes equally
likely. What is Pr(B | A)? What is Pr(B)?

(2 : Uniform

Die 2 B ‘red die is 1’
A --// ca adle 1s
'®,0 0 0 0 O Q={1,..., 6}*
'®10 0 000 A={(1,3),(2,2),(3,1))
. {0 0 0 0 O .
; B ={(1,1),...,(1,6)}
3 ‘L0 O 0 O O
!0 0 0 0 0
'y 4 A ‘sum is 4’
®,0-8 0 00

» Die 1



FUN WITH CONDITIONAL PROBABILITY

® Toss a red die and a blue die. All outcomes equally

likely.

() : Uniform
Die 2 B

A —

4

6 1®.0 0 0 00
3 Ebip\o 00 o0
. | e®i0- 00 00
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What is Pr(B | A)?

‘red die is 1’

B ={(1,1),...,(1,6)}

A ‘sum is 77
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GAMBLER™S FALLACY

Flip a fair coin 51 times. ALl outcomes equally likely.
A = “first 50 flips are heads”

¢ B = “the 515t flip is heads”

Pr (B | A) = ?



