Announcements

-homework solutions - use section solutions as model

-feedback. - partner-finding form.

MORE COUNTING

ANNA KARLIN

MOST OF THE SLIDES CREATED BY ALEX TSUN

PIGEONHOLE PRINCIPLE

9 holes 10 pigeons.

SUPPOSE WE SPLIT 11 CHILDREN UP INTO 3 GROUPS AND EACH GROUP GETS A CAKE TO SHARE. WHAT IS THE LARGEST NUMBER OF CHILDREN THAT WILL NEED TO SHARE A CAKE?

PIGEONHOLE PRINCIPLE: IDEA

IF 11 CHILDREN HAVE TO SHARE 3 CAKES, AT LEAST ONE CAKE MUST BY AT LEAST HOW MANY CHILDREN? 4 (11/3 BUT ROUNDED UP)

PIGEONHOLE PRINCIPLE (PHP)

If there are n pigeons we want to put into k pigeonholes (where n > k), then at least one pigeonhole must contain at least 2 pigeons.

More generally, if there are n pigeons we want to put into k pigeonholes, then at least one pigeonhole must contain at least [n/k] pigeons.

THE FLOOR AND CEILING FUNCTIONS

The floor function [x] returns the largest integer $\leq x$ (i.e., rounds down).

$$[2.5] = 2$$
 $[16.99999] = 16$ $[5] = 5$

The ceiling function [x] returns the smallest integer $\ge x$ (i.e., rounds up).

[2.5] = 3 [9.000301] = 10 [5] = 5

PIGEONHOLE PRINCIPLE (PHP)

If there are n pigeons we want to put into k pigeonholes (where n > k), then at least one pigeonhole must contain at least 2 pigeons.

More generally, if there are n pigeons we want to put into k pigeonholes, then at least one pigeonhole must contain at least [n/k] pigeons.

USE THE PHP TO SHOW THAT IN EVERY SET OF 100 NUMBERS, THERE ARE TWO WHOSE DIFFERENCE IS A MULTIPLE OF 37.

PIGEONHOLE PRINCIPLE (PHP)

USE THE PHP TO SHOW THAT IN EVERY SET OF 100 NUMBERS, THERE ARE TWO WHOSE DIFFERENCE IS A MULTIPLE OF 37.

100 numbers

WHEN SOLVING A PHP PROBLEM:

- IDENTIFY THE PIGEONS
- THE PIGEONHULES
- SPECIFY HOW PIGEONS ARE ASSIGNED TO HOLES
- APPLY THE PRINCIPLE

1 med 37

LET'S PRACTICE SOME MORE

QUICK REVIEW OF CARDS

- 52 total cards
- 52 total cards
- 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
- 4 different suits: Hearts, Diamonds, Clubs, Spades

COUNTING CARDS

• How many possible 5 card hands?

- A "straight" is five consecutive rank cards of any suit. How many possible straights? lowest rank suit suit lowest and lowest and lowest 4.4.4.4.4 = 10.4
 - 52 total cards
 - 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A
 - 4 different suits: Hearts, Diamonds, Clubs, Spades

COUNTING CARDS

• How many possible 5 card hands?

• A flush is five card hand all of the same suit. How many possible fluches?

COUNTING CARDS

A "straight" is five consecutive rank cards of any suit. How many possible straights?

 $10 \cdot 4^5 = 10,240$

(a) $11 \cdot \binom{12}{5} \cdot 4$

(c) 4·(¹³)

()

(b) 10.45 - 4.10

4.10

don't Know

A flush is five card hand all of the same suit. How many possible flushes?

$$4 \cdot \binom{13}{5} = 5,148$$

How many flushes are not straights?

• 52 total cards

• 13 different ranks: 2,3,4,5,6,7,8,9,10,J,Q,K,A

• 4 different suits: Hearts, Diamonds, Clubs, Spades

THE SLEUTH'S CRITERION (RUDICH)

FOR EACH OBJECT CONSTRUCTED, IT SHOULD BE POSSIBLE TO RECONSTRUCT THE UNIQUE SEQUENCE OF CHOICES THAT LED TO IT.

EXAMPLE: How many ways are there to choose that contains at least 3 Aces?

correct

overcounts

undercour

First choose 3 Aces, then choose remaining two cards.

D, AS, AH 2H

AC. AD. AS

FOR EACH OBJECT CONSTRUCTED, IT SHOULD BE POSSIBLE TO RECONSTRUCT THE UNIQUE SEQUENCE OF CHOICES THAT LED TO IT.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

THE SLEUTH'S CRITERION (RUDICH)

FOR EACH OBJECT CONSTRUCTED, IT SHOULD BE POSSIBLE TO RECONSTRUCT THE UNIQUE SEQUENCE OF CHOICES THAT LED TO IT.

EXAMPLE: How many ways are there to choose a 5 card hand that contains at least 3 Aces?

WHEN IN DOUBT, BREAK SET UP INTO DISJOINT SETS YOU KNOW HOW TO COUNT AND THEN USE THE SUM RULE.

It hands with exactly 3 trees

1

8 BY 8 CHESSBOARD

HOW MANY WAYS TO PLACE A PAWN, A BISHOP AND A KNIGHT SO THAT None are in the same row or column

ROOKS ON CHESSBOARD

HOW MANY WAYS TO PLACE TWO IDENTICAL ROOKS ON A CHESSBOARD SO THAT THEY DON'T SHARE A ROW OR A COLUMN

DOUGHNUTS

YOU GO TO TOP POT TO BUY A DOZEN DONUTS. YOUR CHOICES ARE **Chocolate, lemon-filled, Maple, Glazed, Plain** How many ways are there to choose a dozen doughnuts when Doughnuts of the same type are indistinguishable?

STARS AND BARS/DIVIDER METHOD

THE NUMBER OF WAYS TO DISTRIBUTE N INDISTINGUISHABLE BALLS INTO K DISTINGUISHABLE BINS IS

$$\begin{pmatrix} \mathsf{N}+(\mathsf{K}-1)\\ \mathsf{K}-1 \end{pmatrix} = \begin{pmatrix} \mathsf{N}+(\mathsf{K}-1)\\ \mathsf{N} \end{pmatrix}$$

DOUGHNUTS

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "GODOGGY"?

N=7 LETTERS, K=4 TYPES {G, 0, D, Y} $N_1 = 3, N_2 = 2, N_3 = 1, N_4 = 1$ $\frac{7!}{3! 2! 1! 1!} = \begin{pmatrix} 7 \\ 3, 2, 1, 1 \end{pmatrix}$

MULTINOMIAL COEFFICIENTS

IF WE HAVE K TYPES OF OBJECTS (N TOTAL), WITH N₁ of the first type, N₂ of the second, ..., and N_k of the kth, then the number of Arrangements possible is

$$\left(\begin{array}{c}\mathsf{N}\\\mathsf{N}_1,\mathsf{N}_2,\ldots,\mathsf{N}_{\mathsf{K}}\end{array}\right) = \frac{\mathsf{N}!}{\mathsf{N}_1!\,\mathsf{N}_2!\ldots\,\mathsf{N}_{\mathsf{K}}!}$$

COMBINATORIAL ARGUMENT/PROOF

- LET S BE A SET OF OBJECTS
- Show how to count |S| one way = \rangle |S| = N
- Show how to count |S| another way = \rangle . |S| = M

$$(ONCLUDE N = M$$

$$\begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n \\ n-r \end{pmatrix} \leftarrow$$

$$\Rightarrow \begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n-1 \\ r-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ r \end{pmatrix} \leftarrow$$

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n}{r} \begin{pmatrix} n-1 \\ r-1 \end{pmatrix} \leftarrow$$

COMBINATORIAL PROOFS: EXAMPLE

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Consider the set of numbers $\{1, 2, ..., n\}$.

COMBINATORIAL PROOFS: EXAMPLE

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Consider the set of numbers $\{1, 2, ..., n\}$.

Left Side: Counts the number of subsets of size k.

Right Side: Two cases. We either include the number 1 or not.

- If we include the number 1, we need to choose k 1 out of the remaining n 1.
- If we don't include it, we need to choose k out of the remaining n-1.

COMBINATORIAL PROOFS: EXAMPLE

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Consider the set of numbers $\{1, 2, ..., n\}$.

Left Side: Counts the number of subsets of size k.

THE ALTERNATIVE....

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}$$

= 20 years later ...
$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

TOOLS AND CONCEPTS

- Sum rule, Product rule
- Permutations, combinations
- Inclusion-exclusion
- Binomial Theorem
- Combinatorial proofs
- Pigeonhole principle
- Stars and bars

