WELCOME TO CSE312!

SLIDE DESIGN BY ALEX TSUN

MOST IMPORTANT SOURCE OF INFORMATION

http://courses.cs.Washington.edu/312

WHY PROBABILITY AND STATISTICS?

+ much more!

1. COUNTING

ANNA KARLIN

MOST OF THE SLIDES CREATED BY ALEX TSUN

COUNTING IS HARD WITH ONLY 10 FINGERS

How many ways are there to do X?

- X = "Choose a number between 1 and 10"
- X = "Walk from 1^{st} and Spring to 5^{th} and Pine

COUNTING IS HARD WHEN NUMBERS OR LARGE OR CONSTRAINTS ARE COMPLEX

- SUM RULE
- PRODUCT RULE
- PERMUTATIONS
- COMPLEMENTARY COUNTING

SUM RULE

IF AN EXPERIMENT CAN EITHER END UP BEING ONE OF N OUTCOMES, OR ONE OF M OUTCOMES (WHERE THERE IS NO OVERLAP), THEN THE NUMBER OF POSSIBLE OUTCOMES OF THE EXPERIMENT IS

> N+M N (SE) Mam

COUNTING "OUTFITS" IF AN OUTFIT CONSISTS OF **EITHER** A TOP **OR** A BOTTOM, HOW MANY OUTFITS ARE POSSIBLE?

PRODUCT RULE

IF AN EXPERIMENT HAS N_1 outcomes for the first stage, N_2 outcomes for the second stage (given the first), ..., and N_M outcomes for the MTH stage (given the previous stages), then the total number of outcomes of the experiment is. $N_1 X N_2 X ... N_M$

PRODUCT RULE

IF AN EXPERIMENT HAS N_1 outcomes for the first stage, N_2 outcomes for the second stage, given the first, ..., and N_M outcomes for the MTH stage, given the previous, then the total number of outcomes of the experiment is. $N_1 X N_2 X ... N_M$

EXAMPLE: HOW MANY N BIT STRINGS ARE THERE?

PRODUCT RULE

• How many N-bit numbers are there? 2^{N}

ATM'S AND PIN CODES AND ROBBERS

ATM'S AND PIN CODES

- How many 4-digit pin codes are there?
- Each digit is one of {0,1,2,...,9}

10 005

SO ONE IN TEN THOUSAND CHANCE THAT A ROBBER CAN GUESS YOUR PIN CODE...

STRONGER PINS

HOW MANY SUCH PINS?

(0)

PERMUTATIONS

THE NUMBER OF ORDERINGS OF N **DISTINCT** OBJECTS IS

$N! = N \times (N-1) \times (N-2) \times ... \times 3 \times 2 \times 1$

READ AS "N FACTORIAL"

26!

10-DIGIT PIN CODE, HAS AT LEAST ONE DIGIT REPEATED AT LEAST ONCE **How many such pins?**

10-DIGIT PIN CODE, HAS AT LEAST ONE DIGIT REPEATED AT LEAST ONCE

HOW MANY SUCH PINS?

10-DIGIT PIN CODE, HAS AT LEAST ONE DIGIT REPEATED AT LEAST ONCE

10-DIGIT PIN CODE, HAS AT LEAST ONE DIGIT REPEATED AT LEAST ONCE

TRICKY PINS

COMPLEMENTARY COUNTING

LET **U** BE A (FINITE) UNIVERSAL SET, AND **S** A SUBSET OF INTEREST. LET **UNS** DENOTE THE SET DIFFERENCE. THEN,

 $|S| = |U| - |U \setminus S|$

THAT IS, THE COMPLEMENT OF THE SUBSET OF INTEREST IS ALSO OF INTEREST ...

LET'S EXPAND OUR TOOLBOX SOME MORE

- K-PERMUTATIONS
- COMBINATIONS/BINOMIAL COEFFICIENTS
- COMBINATORIAL PROOFS
- MULTINOMIAL COEFFICIENTS

MINI-RAINBOWS?

HOW MANY 3-COLOR MINI-RAINBOWS CAN BE MADE OUT OF 7 AVAILABLE COLORS?

MINI-RAINBOWS HOW MANY 3-COLOR MINI-RAINBOWS CAN BE MADE OUT OF 7 AVAILABLE COLORS? 6 X 5 X 7 210 # POSSIBLE **#** POSSIBLE # POSSIBLE # POSSIBLE OUTER COLORS MIDDLE COLORS **INNER COLORS** MINI-RAINBOWS 7.6.5

LET'S FIND A SHORTHAND

$$\frac{7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} = \frac{7!}{4!} = \frac{7!}{(7-3)!}$$

WE ARE "PICKING" 3 OUT OF THE 7 AVAILABLE COLORS.

LET'S FIND A SHORTHAND

$$7 \times 6 \times 5 = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7! = 7!$$

$$4 \times 3 \times 2 \times 1 = 4! = (7-3)!$$

WE ARE "PICKING" 3 OUT OF THE 7 AVAILABLE COLORS.

K-PERMUTATIONS

IF WE WANT TO ARRANGE **ONLY** K OUT OF N DISTINCT OBJECTS, THE NUMBER OF WAYS TO DO SO IS

N!

[n]

$$P(N,K) = N X (N-1) X (N-2) X ... X (N-K+1) = \frac{N!}{(N-K)!}$$

READ AS "N PICK K"

SMEARED MINI-RAINBOWS

HOW MANY WAYS ARE THERE TO PICK 3 DIFFERENT COLORS OUT OF 7 IF I'M GOING TO SMEAR THEM ALL TOGETHER?

MINI-RAINBOWS AGAIN

Recall there were 210 mini-rainbows. Look at these particular 3! = 6 mini-rainbows with Blue, Orange, and Red.

THEY ALL PRODUCE THE SAME "SMEAR"!

SMEARED VS MINI-RAINBOWS

MINI-RAINBOWS AGAIN

EACH "SMEARED" COLOR IS COUNTED EXACTLY 3! = 6 TIMES, SO WE CAN TAKE OUR 210 MINI-RAINBOWS AND DIVIDE BY 6 TO GET THE ANSWER!

COMBINATIONS/BINOMIAL COEFFICIENTS

IF WE WANT TO SELECT (ORDER DOESN'T MATTER) **ONLY** K OUT OF N DISTINCT OBJECTS, THE NUMBER OF WAYS TO DO SO IS

$$\frac{C(N,K)}{K} = \binom{N}{K} = \frac{P(N,K)}{K!} = \frac{N!}{K!(N-K)!}$$

Both Acceptable
READ AS "N CHOOSE K"

MORE INTUITIVE REASON

NUMBER OF WAYS TO CHOOSE K OUT OF N OBJECTS (UNORDERED)

- CHOOSE WHICH K ELEMENTS ARE INCLUDED
- CHOOSE WHICH N-K ELEMENTS ARE EXCLUDED

MORE INTUITIVE REASON

NUMBER OF WAYS TO CHOOSE K OUT OF N OBJECTS (UNORDERED)

- CHOOSE WHICH K ELEMENTS ARE INCLUDED
- CHOOSE WHICH N-K ELEMENTS ARE EXCLUDED

THIS IS CALLED A COMBINATORIAL ARGUMENT/PROOF

- LET S BE A SET OF OBJECTS
 - Show how to count ISI one way = > ISI=N

Show how to count ISI another way = \rangle . ISI = M

-, N - M

COMBINATORIAL ARGUMENT/PROOF

- LET S BE A SET OF OBJECTS
- Show how to count |S| one way = \rangle |S| = N

(ONCLUDE N = M

• Show how to count |S| another way = \rangle . |S| = M

$$\begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n \\ n-r \end{pmatrix}$$

$$\begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n-1 \\ r-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ r \end{pmatrix}$$

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n}{r} \begin{pmatrix} n-1 \\ r-1 \end{pmatrix}$$

COMBINATORIAL PROOFS: IDEA

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Consider the set of numbers $\{1, 2, ..., n\}$.

COMBINATORIAL PROOFS: IDEA

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Consider the set of numbers $\{1, 2, ..., n\}$.

Left Side: Counts the number of subsets of size k.

COMBINATORIAL PROOFS: IDEA

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Consider the set of numbers $\{1, 2, ..., n\}$.

Left Side: Counts the number of subsets of size k.

Right Side: Two cases. We either include the number 1 or not.

- If we include the number 1, we need to choose k 1 out of the remaining n 1.
- If we don't include it, we need to choose k out of the remaining n-1.

THE ALTERNATIVE....

Show that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}$$

= 20 years later ...
$$= \frac{n!}{k!(n-k)!}$$

$$= \binom{n}{k}$$

HOW MANY WAYS TO WALK FROM 1^{st} and spring to 5^{th} and pine?

ONLY GOING NORTH AND EAST

(a)
$$a^{7}$$

(b) $\begin{pmatrix} 7\\3 \end{pmatrix}$
(c) $\begin{pmatrix} 7\\4 \end{pmatrix}$
(d) $P(7,3)$

HOW MANY WAYS TO WALK FROM 1^{st} and spring to 5^{th} and pine, stopping at the starbucks on 3^{rd} and pike

ONLY GOING NORTH AND EAST $(a) \begin{pmatrix} 7\\ 3 \end{pmatrix}$ $(b) \begin{pmatrix} 7\\ 3 \end{pmatrix} \begin{pmatrix} 7\\ 1 \end{pmatrix}$ $\begin{pmatrix} c \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4\\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3\\ 2 \end{pmatrix}$ (d)

RANDOM PICTURE

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MATH"?

(a) 4^{4} (b) 4!(c) $\binom{26}{4}$

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MATH"?

4! = 24 SINCE THEY ARE DISTINCT OBJECTS!

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MUUMUU"?

(a)
$$6!$$

(b) $\binom{6}{a} \cdot \binom{4}{4}$
(c) $\binom{6}{4}$
(d) $6 \cdot 5$

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MUUMUU"?

CHOOSE WHERE THE 2 M'S GO, AND THEN THE U'S ARE SET. OR CHOOSE WHERE THE 4 U'S GO, AND THEN THE M'S ARE SET. EITHER WAY, WE GET $\binom{6}{2} \cdot \binom{4}{4} = \binom{6}{4} \cdot \binom{2}{2} = \frac{6!}{2!4!}$

ANOTHER WAY TO THINK ABOUT IT

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MUUMUU"?

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "MUUMUU"? $\binom{6}{2} \cdot \binom{4}{4} = \binom{6}{4} \cdot \binom{2}{2} = \frac{6!}{2!4!}$

ANOTHER INTERPRETATION :

ARRANGE THE 6 LETTERS AS IF THEY WERE DISTINCT. THEN DIVIDE BY 4! AND 2! TO ACCOUNT FOR 4 DUPLICATE O'S AND 2 DUPLICATE P'S.

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "GODOGGY"?

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "GODOGGY"?

 $N = 7 LETTERS, K = 4 TYPES \{G, O, D, Y\}$

HOW MANY WAYS CAN YOU ARRANGE THE LETTERS IN "GODOGGY"?

 $N = 7 \text{ LETTERS, } K = 4 \text{ TYPES } \{G, O, D, Y\}$ $N_1 = 3, N_2 = 2, N_3 = 1, N_4 = 1$ $\frac{7!}{3! 2! 1! 1!} = \begin{pmatrix} 7 \\ 3, 2, 1, 1 \end{pmatrix}$

MULTINOMIAL COEFFICIENTS

IF WE HAVE K TYPES OF OBJECTS (N TOTAL), WITH N₁ of the first type, N₂ of the second, ..., and N_k of the kth, then the number of Arrangements possible is

$$\left(\begin{array}{c}\mathsf{N}\\\mathsf{N}_1,\mathsf{N}_2,\ldots,\mathsf{N}_{\mathsf{K}}\end{array}\right) = \frac{\mathsf{N}!}{\mathsf{N}_1!\,\mathsf{N}_2!\ldots\,\mathsf{N}_{\mathsf{K}}!}$$

AND FINALLY...

- BINOMIAL THEOREM
- INCLUSION-EXCLUSION
- PIGEONHOLE PRINCIPLE
- STARS AND BARS/DIVIDER METHOD

$$(x + y)^2 = (x + y)(x + y)$$

xx + xy + yx + yy

$$x^2 + 2xy + y^2$$

 $(x + y)^4 = (x + y)(x + y)(x + y)(x + y)$

$(x + y)^4 = (x + y)(x + y)(x + y)(x + y)$

 $xxxx + yyyy + xyxy + yxyy + \cdots$

$$(x + y)^4 = (x + y)(x + y)(x + y)(x + y)$$

Each term is of the form $x^k y^{n-k}$ (in our case, n = 4), since we multiply exactly n variables, either x or y.

How many times do we get $x^k y^{n-k}$? The number of ways to choose k of them to produce x (the rest will be y).

BINOMIAL THEOREM

Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ a positive integer. Then,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

|A| = 43|B| = 20 $|A \cap B| = 7$ $|A \cup B| =???$

INCLUSION - EXCLUSION

A = A + B + C

$$\begin{split} |\mathsf{A}\cup\mathsf{B}\cup\mathsf{C}| &= |\mathsf{A}| + |\mathsf{B}| + |\mathsf{C}| \\ &- |\mathsf{A}\cap\mathsf{B}| - |\mathsf{A}\cap\mathsf{C}| - |\mathsf{B}\cap\mathsf{C}| \\ &+ |\mathsf{A}\cap\mathsf{B}\cap\mathsf{C}| \end{split}$$

 $|A \cup B| = |A| + |B| - |A \cap B|$

INCLUSION-EXCLUSION

Let A, B be sets. Then,

 $|A \cup B| = |A| + |B| - |A \cap B|.$

In general, if A_1, A_2, \dots, A_n are sets, then

 $|A_1 \cup ... \cup A_n| = singles - doubles + triples - quads + \cdots$

 $= (|A_1| + \dots + |A_n|) - (|A_1 \cap A_2| + \dots + |A_{n-1} \cap A_n|) + \dots$