
CSE 312: Foundations of Computing II
Section 9: Tail Bounds, Maximum Likelihood, Markov Chains

1. Review of Main Concepts
(a) Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]

α .

(b) Chebyshev’s Inequality (we did not cover this in class): Suppose Y is a random variable with E[Y ] = µ

and Var(Y ) = σ2. Then, for any α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2 .

(c) Chernoff Bound (for the Binomial):(We did not cover this in class, but it’s good to know.) It’s stronger
than the Chebyshev bound. Suppose X ∼ Binomial(n, p) and µ = np. Then, for any 0 < δ < 1,

• P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
3

• P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2

(d) Weak Law of Large Numbers (WLLN): (We have not covered this in class, but good to know.) Let
X1, . . . , Xn be iid random variables with common mean µ and variance σ2. Let Xn = 1

n

∑n
i=1Xi be the

sample mean for a sample of size n. Then, for any ε > 0, limn→∞ P(|X̄n −µ| > ε) = 0. We say that X̄n

converges in probability to µ.

(e) Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

(f) Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (if X discrete) or
density fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the
likelihood function to be the probability of seeing the data.
If X is discrete:

L (x1, . . . , xn | θ) =

n∏
i=1

pX (xi | θ)

If X is continuous:
L (x1, . . . , xn | θ) =

n∏
i=1

fX (xi | θ)

(g) Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter
(or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)

(h) Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since
the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly
the same as the value that maximizes the log-likelihood.
If X is discrete:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln pX (xi | θ)

If X is continuous:
lnL (x1, . . . , xn | θ) =

n∑
i=1

ln fX (xi | θ)
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(i) Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ
)
= E[θ̂]−θ. An estimator

θ̂ of θ is unbiased iff Bias
(
θ̂, θ
)
= 0, or equivalently E[θ̂] = θ.

(j) Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.
(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.
(c) Take the second derivative and show that θ̂ indeed is a maximizer, that partial2L

∂θ2
< 0 at θ̂. Also

ensure that it is the global maximizer: check points of non-differentiability and boundary values.

(k) (To be covered in class 12/4) A discrete-time stochastic process (DTSP) is a sequence of random
variables X0, X1, X2, ..., where Xt is the value at time t. For example, the temperature in Seattle or stock
price of TESLA each day, or which node you are at after each time step on a random walk on a graph.

(l) (To be covered in class 12/4) A Markov Chain is a DTSP, with the additional following three properties:

I. ...has a finite (or countably infinite) state space S = {s1, . . . , sn} which it bounces between, so
each Xt ∈ S.

II. ...satisfies the Markov property. A DTSP satisfies the Markov property if the future is (condition-
ally) independent of the past given the present. Mathematically, it means, P (Xt+1 = xt+1|X0 =
x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = xt) = P (Xt+1 = xt+1|Xt = xt).

III. ...has stationary transition probabilities. Meaning, if we are at some state si, we transition to
another state sj with probability independent of the current time. Due to this property and the
previous, the transitions are governed by n2 probabilities: the probability of transitioning from one of
n current states to one of n next states. These are stored in a square n× n transition probability
matrix (TPM) P , where Pij = P (Xt+1 = sj |Xt = si) is the probability of transitioning from state
si to state sj for any/every value of t.

2. 312 Grades
Suppose Professor Karlin loses everyones grades for 312 and decides to make it up by assigning grades randomly
according to the following probability distribution, and hoping the n students wont notice: give an A with
probability 0.5, a B with probability θ, a C with probability 2θ, and an F with probability 0.5−3θ. Each student
is assigned a grade independently. Let xA be the number of people who received an A, xB the number of people
who received a B, etc, where xA + xB + xC + xF = n. Find the MLE for θ, θ̂.

3. A Red Poisson
(This problem was done in class.) Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable,
where θ is unknown. Find the MLE of θ.

4. Independent Shreds, You Say?
You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is unknown. (Each sample
is either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the distribution’s parameter θ.
Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ?

(b) Is θ̂ an unbiased estimator of θ?
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5. Y Me?
Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y|θ) =
1

2θ
exp(−|y|

θ
)

.
Find the MLE for θ in terms of |yi| and n.

6. A biased estimator
In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when
both the true mean µ and true variance σ2 are unknown) is what’s called the sample variance. That is

θ̂2 =

(
1

n

n∑
i=1

(xi − θ̂1)
2)

)

where θ̂1 =
1
n

∑n
i=1 xi is the MLE of the mean. Is θ̂2 unbiased?

(We will do this problem in class on Friday 12/4 and you have a similar problem on the homework.)

7. Faulty Machines
(Markov Chains discussed in class 12/4). You are trying to use a machine that only works on some days. If
on a given day, the machine is working it will break down the next day with probability 0 < b < 1, and works
on the next day with probability 1 − b. If it is not working on a given day, it will work on the next day with
probability 0 < r < 1 and not work the next day with probability 1− r.

(a) In this problem we will formulate this process as a Markov chain. First, let Xt be a random variable that
denotes the state of the machine at time t. Then, define a state space S that includes all the possible
states that the machine can be in. Lastly, for all A,B ∈ S find P(Xt+1 = A | Xt = B) (A and B can be
the same state).

(b) Suppose that on day 1, the machine is working. What is the probability that it is working on day 3?

(c) As n → ∞, what does the probability that the machine is working on day n converge to? To get the
answer, solve for the stationary distribution.

8. Three tails
You flip a fair coin until you see three tails in a row. Model this as a Markov chain with the following states:

• S: start state, which we are only in before flipping any coins.

• H: We see a heads, which means no streak of tails currently exists.

• T : We’ve seen exactly one tail in a row so far.

• TT : We’ve seen exactly two tails in a row so far.

• TTT : We’ve accomplished our goal of seeing three tails in a row and stop flipping.

(a) Write down the transition probability matrix.

(b) Write down the system of equations whose variables are D(s) for each state s ∈ {S,H, T, TT, TTT},
where D(s) is the expected number of steps until state TTT is reached starting from state s. Solve this
system of equations to find D(S).
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(c) Write down the system of equations whose variables are γ(s) for each state s ∈ {S,H, T, TT, TTT},
where γ(s) is the expected number of heads seen before state TTT is reached. Solve this system to find
γ(S), the expected number of heads seen overall until getting three tails in a row.

9. Another Markov chain
Suppose that the following is the transition probability matrix for a 4 state Markov chain (states 1,2,3,4).

P =


0 1/2 1/2 0
1/3 0 0 2/3
1/3 1/3 0 1/3
1/5 2/5 2/5 0


(a) What is the probability that X2 = 4 given that X0 = 4?

(b) Write down the system of equations that the stationary distribution must satisfy and solve them.

10. Law of Total Probability Review
(a) (Discrete version) Suppose we flip a coin with probability U of heads, where U is equally likely to be one

of ΩU = {0, 1
n ,

2
n , ..., 1} (notice this set has size n + 1). Let H be the event that the coin comes up

heads. What is P(H)?

(b) (Continuous version) Now suppose U ∼ Uniform(0,1) has the continuous uniform distribution over the
interval [0, 1]. What is P(H)?

(c) Let’s generalize the previous result we just used. Suppose E is an event, and X is a continuous random
variable with density function fX(x). Write an expression for P(E), conditioning on X.

11. Poisson CLT practice
Suppose X1, . . . , Xn are iid Poisson(λ) random variables, and let Xn = 1

n

∑n
i=1Xi, the sample mean. How

large should we choose n to be such that P(λ2 ≤ Xn ≤ 3λ
2 ) ≥ 0.99? Use the CLT and give an answer involving

Φ−1(·). Then evaluate it exactly when λ = 1/10 using the Φ table on the last page.

12. Tail bounds
Suppose X ∼ Binomial(6, 0.4). We will bound P(X ≥ 4) using the tail bounds we’ve learned, and compare this
to the true result.

(a) Give an upper bound for this probability using Markov’s inequality. Why can we use Markov’s inequality?

(b) (optional) Give an upper bound for this probability using Chebyshev’s inequality. You may have to
rearrange algebraically and it may result in a weaker bound.

(c) (optional) Give an upper bound for this probability using the Chernoff bound.

(d) Give the exact probability.
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13. MAP Estimation (optional)
I recommend you read sections 7.4 and 7.5, if you’re interested. Let x1, ..., xn be iid realizations from a
distribution with common pmf pX(x; θ) where θ is an unknown but fixed parameter. Let’s call the event
{X1 = x1, ..., Xn = xn} = D for data. You may wonder why in MLE, we seek to maximize the likelihood
L(D | θ), rather than P(θ | D). This is because it doesn’t make sense to compute P(θ), since θ is fixed. However,
in Maximum a Posteriori (MAP) estimation, we assume the parameter is a random variable (denoted Θ),
and attempt to maximize πΘ(θ | D), where πΘ is the pmf or pdf of Θ, depending on whether Θ is continuous
or discrete. Using Bayes Theorem, we get πΘ(θ | D) = L(D|θ)πΘ(θ)

L(D) . To maximize the LHS with respect to θ, we
may ignore the denominator on the RHS since it is constant with respect to θ. Hence MAP seeks to maximize
πΘ(θ | D) ∝ L(D | θ)πΘ(θ). We call πΘ(θ) the prior distribution on the parameter Θ, and πΘ(θ | D) the
posterior distribution on Θ. MLE maximizes the likelihood, and MAP maximizes the product of the likelihood
and the prior. If the prior is uniform, we will see that MAP is the same as MLE (since πΘ(θ) won’t depend on
θ).

(a) Suppose we have the samples x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0 from the Bernoulli(θ) distribution,
where θ is unknown. Assume θ is unrestricted; that is, θ ∈ (0, 1). What is θ̂MLE?

(b) Suppose we impose that θ ∈ {0.2, 0.5, 0.7}. What is θ̂MLE?

(c) Assume Θ is restricted as in part (b) (now a random variable for MAP). Assume a (discrete) prior of
πΘ(0.2) = 0.1, πΘ(0.5) = 0.01, πΘ(0.7) = 0.89. What is θ̂MAP ?

(d) Show that we can make the MAP estimator whatever we want it to be. That is, for each of the three
candidate parameters above, find a prior distribution on Θ such that the MAP estimate is that parameter.

(e) Typically, for the Bernoulli/Binomial distribution, if we use MAP, we want to be able to get any value
θ ∈ (0, 1) (not just ones in a finite set such as {0.2, 0.5, 0.7}). So we assign θ the Beta distribution with
parameters α, β > 0 and density πΘ(θ) = cθα−1(1−θ)β−1 for θ ∈ (0, 1) and 0 otherwise as a prior, where c
is a normalizing constant which has a complicated form. The mode of a W ∼ Beta(α, β) random variable
is given as α−1

α+β−2 (the mode is the value with the highest density = argmaxw∈(0,1) fW (w)). Suppose
x1, ..., xn are iid samples from the Bernoulli distribution with unknown parameter, where

∑n
i=1 xi = k.

Recall that the MLE is k/n. Show that the posterior πΘ(θ | D) has a Beta(k + α, n − k + β) density,
and find the MAP estimator for Θ. (Hint: use the mode given). Notice that Beta(1, 1) ≡ Uniform(0, 1).
If we had this prior, how would the MLE and MAP estimates compare?

(f) Since the posterior is also a Beta distribution, we call the Beta distribution the conjugate prior to the
Bernoulli/Binomial distribution. Intepret what the parameters α, β mean as to the prior.

(g) Which do you think is “better", MLE or MAP?
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