CSE 312: Foundations of Computing II Quiz Section #9: Law of Large Numbers, Maximum Likelihood Estimation, Confidence Intervals

Review: Main Theorems and Concepts

Weak Law of Large Numbers (WLLN): Let X_1, \ldots, X_n be iid random variables with common mean μ and variance σ^2 . Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean for a sample of size *n*. Then, for any $\epsilon > 0$, $\lim_{n\to\infty} \mathbb{P}(|\overline{X}_n - \mu| > \epsilon) = 0$. We say that \overline{X}_n converges in probability to μ .

Strong Law of Large Numbers (SLLN): Let X_1, \ldots, X_n be iid random variables with common mean μ and variance σ^2 . Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean for a sample of size *n*. Then, $\mathbb{P}(\lim_{n\to\infty} \overline{X}_n = \mu) = 1$. We say that \overline{X}_n converges almost surely to μ . The SLLN implies the WLLN, but not vice versa.

Realization/Sample: A realization/sample *x* of a random variable *X* is the value that is actually observed.

Likelihood: Let $x_1, \ldots x_n$ be iid realizations from probability mass function $p_X(\mathbf{x} \mid \theta)$ (if X discrete) or density $f_X(\mathbf{x} \mid \theta)$ (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function to be the probability of seeing the data.

If X is discrete:

$$L(x_1,\ldots,x_n \mid \theta) = \prod_{i=1}^n p_X(x_i \mid \theta)$$

If X is continuous:

$$L(x_1,\ldots,x_n\mid\theta)=\prod_{i=1}^n f_X(x_i\mid\theta)$$

Maximum Likelihood Estimator (MLE): We denote the MLE of θ as $\hat{\theta}_{MLE}$ or simply $\hat{\theta}$, the parameter (or vector of parameters) that maximizes the likelihood function (probability of seeing the data).

$$\hat{\theta}_{\text{MLE}} = \operatorname*{argmax}_{\theta} L(x_1, \dots, x_n \mid \theta) = \operatorname*{argmax}_{\theta} \ln L(x_1, \dots, x_n \mid \theta)$$

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that maximizes the log-likelihood.

If X is discrete:

$$\ln L(x_1,\ldots,x_n\mid\theta)=\sum_{i=1}^n\ln p_X(x_i\mid\theta)$$

If X is continuous:

$$\ln L(x_1,\ldots,x_n\mid\theta)=\sum_{i=1}^n\ln f_X(x_i\mid\theta)$$

Bias: The bias of an estimator $\hat{\theta}$ for a true parameter θ is defined as $\text{Bias}(\hat{\theta}, \theta) = \mathbb{E}[\hat{\theta}] - \theta$. An estimator $\hat{\theta}$ of θ is unbiased iff $\text{Bias}(\hat{\theta}, \theta) = 0$, or equivalently $\mathbb{E}[\hat{\theta}] = \theta$.

Steps to find the maximum likelihood estimator, $\hat{\theta}$:

- 1. Find the likelihood and log-likelihood of the data.
- 2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, $\hat{\theta}$.
- 3. Take the second derivative and show that $\hat{\theta}$ indeed is a maximizer, that $\frac{d^2L}{d\theta^2} < 0$ at $\hat{\theta}$. Also ensure that it is the global maximizer: check points of non-differentiability and boundary values.

Confidence Intervals: The probability that the MLE $\hat{\theta}$ of a parameter θ is equal to the true value of θ is 0. We say that $(\hat{\theta} - \Delta, \hat{\theta} + \Delta)$ is a *K*% confidence interval for θ if and only if $\mathbb{P}\left(\theta \in (\hat{\theta} - \Delta, \hat{\theta} + \Delta)\right) \ge K/100$.

Exercises

- 1. Let $f(x \mid \theta) = \theta x^{\theta-1}$ for $0 \le x \le 1$, where θ is any positive real number. Let x_1, x_2, \ldots, x_n be i.i.d. samples from this distribution. Derive the maximum likelihood estimator $\hat{\theta}$.
- 2. Suppose x_1, \ldots, x_n are iid realizations from density

$$f_X(x \mid \theta) = \begin{cases} \frac{\theta x^{\theta-1}}{3^{\theta}}, & 0 \le x \le 3\\ 0, & \text{otherwise} \end{cases}$$

Find the MLE for θ .

3. Suppose x_1, \ldots, x_{2n} are iid realizations from the Laplace density (double exponential density)

$$f_X(x \mid \theta) = \frac{1}{2}e^{-|x-\theta|}$$

Find the MLE for θ . For this problem, you need not verify that the MLE is indeed a maximizer. You may find the **sign** function useful:

$$\operatorname{sgn}(x) = \begin{cases} +1, & x \ge 0\\ -1, & x < 0 \end{cases}$$

- 4. You are given 100 independent samples $x_1, x_2, ..., x_{100}$ from Ber(*p*), where *p* is unknown. These 100 samples sum to 30. You would like to estimate the distribution's parameter *p*. Give all answers to 3 significant digits.
 - (a) What is the maximum likelihood estimator \hat{p} of p?
 - (b) Is \hat{p} an unbiased estimator of p?
 - (c) Give your best approximation for the 95% confidence interval of p.
 - (d) Give your best approximation for the 90% confidence interval of p.
 - (e) Give three different reasons why your answers to (c) and (d) are only approximations.
 - (f) Explain why it makes sense that the interval in (d) is bigger (or smaller, depending on your answers) than the interval in (c).

- 5. Suppose X_1, \ldots, X_n are iid random variables from some distribution with unknown mean θ and known variance σ^2 , and your estimate $\hat{\theta}$ for its mean θ is the sample mean $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n X_i$. For any α , construct a 100 (1α) % confidence interval (centered around the estimate $\hat{\theta}$) for the true parameter θ . You may assume *n* is "sufficiently large".
- 6. (a) Suppose $x_1, x_2, ..., x_n$ are samples from a normal distribution whose mean is known to be zero, but whose variance is unknown. What is the maximum likelihood estimator for its variance?
 - (b) Suppose the mean is known to be μ but the variance is unknown. How does the maximum likelihood estimator for the variance differ from the maximum likelihood estimator when both mean and variance are unknown?
- 7. (a) Suppose that $\hat{\theta}$ is a biased estimator for θ with $\mathbb{E}[\hat{\theta}] = \alpha \theta$, for some constant $\alpha > 0$. Find an unbiased estimator for θ and prove that it is unbiased.
 - (b) In lecture, we saw that the maximum likelihood estimator for the population variance θ_2 of $N(\theta_1, \theta_2)$ is the sample variance

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta}_1)^2$$

where $\hat{\theta}_1$ is the sample mean. It can be shown that $\mathbb{E}[\hat{\theta}_2] = \frac{n-1}{n} \cdot \theta_2$, so that $\hat{\theta}_2$ is biased and always underestimates the variance θ_2 . Use your result from part (a) to find an unbiased estimator of the variance θ_2 .