
CSE 312: Foundations of Computing II
Quiz Section #9: Law of Large Numbers, Maximum Likelihood Estimation,

Confidence Intervals

Review: Main Theorems and Concepts

Weak Law of Large Numbers (WLLN): Let X1, . . . , Xn be iid random variables with common mean µ and variance
σ2. Let Xn = 1

n
∑n

i=1 Xi be the sample mean for a sample of size n. Then, for any ε > 0, limn→∞ P(|X̄n − µ| > ε) = 0.
We say that X̄n converges in probability to µ.

Strong Law of Large Numbers (SLLN): Let X1, . . . , Xn be iid random variables with common mean µ and variance
σ2. Let Xn = 1

n
∑n

i=1 Xi be the sample mean for a sample of size n. Then, P(limn→∞ X̄n = µ) = 1. We say that X̄n

converges almost surely to µ. The SLLN implies the WLLN, but not vice versa.

Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX (x | θ) (if X discrete) or density
fX (x | θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood function
to be the probability of seeing the data.

If X is discrete:

L (x1, . . . , xn | θ) =

n∏
i=1

pX (xi | θ)

If X is continuous:

L (x1, . . . , xn | θ) =

n∏
i=1

fX (xi | θ)

Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or vector of
parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

ln L (x1, . . . , xn | θ)

Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the logarithm
is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same as the value that
maximizes the log-likelihood.

If X is discrete:

ln L (x1, . . . , xn | θ) =

n∑
i=1

ln pX (xi | θ)

If X is continuous:

ln L (x1, . . . , xn | θ) =

n∑
i=1

ln fX (xi | θ)

Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ

)
= E

[
θ̂
]
− θ. An estimator θ̂ of θ is

unbiased iff Bias
(
θ̂, θ

)
= 0, or equivalently E

[
θ̂
]

= θ.

Steps to find the maximum likelihood estimator, θ̂:
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1. Find the likelihood and log-likelihood of the data.

2. Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

3. Take the second derivative and show that θ̂ indeed is a maximizer, that d2L
dθ2 < 0 at θ̂. Also ensure that it is the

global maximizer: check points of non-differentiability and boundary values.

Confidence Intervals: The probability that the MLE θ̂ of a parameter θ is equal to the true value of θ is 0. We say that
(θ̂ − ∆, θ̂ + ∆) is a K% confidence interval for θ if and only if P

(
θ ∈

(
θ̂ − ∆, θ̂ + ∆

))
≥ K/100.

Exercises

1. Let f (x | θ) = θxθ−1 for 0 ≤ x ≤ 1, where θ is any positive real number. Let x1, x2, . . . , xn be i.i.d. samples from
this distribution. Derive the maximum likelihood estimator θ̂.

2. Suppose x1, . . . , xn are iid realizations from density

fX (x | θ) =

{
θxθ−1

3θ , 0 ≤ x ≤ 3
0, otherwise

Find the MLE for θ.

3. Suppose x1, . . . , x2n are iid realizations from the Laplace density (double exponential density)

fX (x | θ) =
1
2

e−|x−θ|

Find the MLE for θ. For this problem, you need not verify that the MLE is indeed a maximizer. You may find
the sign function useful:

sgn (x) =

{
+1, x ≥ 0
−1, x < 0

4. You are given 100 independent samples x1, x2, . . . , x100 from Ber(p), where p is unknown. These 100 samples
sum to 30. You would like to estimate the distribution’s parameter p. Give all answers to 3 significant digits.

(a) What is the maximum likelihood estimator p̂ of p?

(b) Is p̂ an unbiased estimator of p?

(c) Give your best approximation for the 95% confidence interval of p.

(d) Give your best approximation for the 90% confidence interval of p.

(e) Give three different reasons why your answers to (c) and (d) are only approximations.

(f) Explain why it makes sense that the interval in (d) is bigger (or smaller, depending on your answers) than
the interval in (c).
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5. Suppose X1, . . . , Xn are iid random variables from some distribution with unknown mean θ and known variance
σ2, and your estimate θ̂ for its mean θ is the sample mean θ̂ = 1

n
∑n

i=1 Xi. For any α, construct a 100 (1 − α) %
confidence interval (centered around the estimate θ̂) for the true parameter θ. You may assume n is “sufficiently
large”.

6. (a) Suppose x1, x2, . . . , xn are samples from a normal distribution whose mean is known to be zero, but whose
variance is unknown. What is the maximum likelihood estimator for its variance?

(b) Suppose the mean is known to be µ but the variance is unknown. How does the maximum likelihood
estimator for the variance differ from the maximum likelihood estimator when both mean and variance are
unknown?

7. (a) Suppose that θ̂ is a biased estimator for θ with E[θ̂] = αθ, for some constant α > 0. Find an unbiased
estimator for θ and prove that it is unbiased.

(b) In lecture, we saw that the maximum likelihood estimator for the population variance θ2 of N(θ1, θ2) is the
sample variance

θ̂2 =
1
n

n∑
i=1

(xi − θ̂1)2

where θ̂1 is the sample mean. It can be shown that E[θ̂2] = n−1
n · θ2, so that θ̂2 is biased and always

underestimates the variance θ2. Use your result from part (a) to find an unbiased estimator of the variance
θ2.
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