
CSE 312: Foundations of Computing II
Quiz Section #8: Normal Distribution, Central Limit Theorem

Review: Main Theorems and Concepts

Standardizing: Let X be any random variable (discrete or continuous, not necessarily normal), with E [X] =

µ and Var (X) = σ2. If we let Y =
X−µ
σ , then E [Y] = and Var (Y) = .

Closure of the Normal Distribution: Let X ∼ N(µ, σ2). Then, aX + b ∼ N(aµ + b, a2σ2). That is, linear
transformations of normal random variables are still normal.

“Reproductive” Property of Normals: Let X1, . . . , Xn be independent normal random variables with
E [Xi] = µi and Var (Xi) = σ2

i . Let a1, . . . , an∈ R and b∈ R. Then,

X =

n∑
i=1

(aiXi + b) ∼ N

 n∑
i=1

(aiµi + b),
n∑

i=1

a2
i σ

2
i


There’s nothing special about the parameters – the important result here is that the resulting random variable
is still normally distributed.

Central Limit Theorem (CLT): Let X1, . . . , Xn be iid random variables with E [Xi] = µ and Var (Xi) = σ2.
Let X =

∑n
i=1 Xi, which has E[X] = nµ and Var(X) = nσ2. Let X = 1

n
∑n

i=1 Xi, which has E
[
X
]

= µ

and Var
(
X
)

= σ2

n . X is called the sample mean. Then, as n → ∞, X approaches the normal distribution

N
(
µ, σ

2

n

)
. Standardizing, this is equivalent to Y =

X−µ
σ/
√

n
approaching N(0, 1). Similarly, as n → ∞, X

approaches N(nµ, nσ2) and Y ′ =
X−nµ
σ
√

n
approaches N(0, 1).

It is no surprise that X has mean µ and variance σ2/n – this can be done with simple calculations. The
importance of the CLT is that, for large n, regardless of what distribution Xi comes from, X is approximately
normally distributed with mean µ and variance σ2/n. Don’t forget the continuity correction, only when
X1, . . . , Xn are discrete random variables.

Markov’s Inequality: Let X be a non-negative random variable, and α > 0. Then, P (X ≥ α) ≤ E[X]
α .

Chebyshev’s Inequality: Suppose Y is a random variable with E [Y] = µ and Var (Y) = σ2. Then, for any
α > 0, P (|Y − µ| ≥ α) ≤ σ2

α2 .

Cantelli’s Inequality (one-sided Chebyshev): Suppose Y is a random variable with E [Y] = µ and Var (Y) =

σ2. Then, for any α > 0, P (Y − µ ≥ α) ≤ σ2

σ2+α2 .

Chernoff Bound (for the Binomial): Suppose X ∼ Bin(n, p) and µ = np. Then, for any 0 < δ < 1,

• P (X ≥ (1 + δ) µ) ≤ e−
δ2µ
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• P (X ≤ (1 − δ) µ) ≤ e−
δ2µ

2

Exercises

The Φ table is on the last page for use in these exercises.

1. Let X ∼ N(50, 5). What is the probability that X is greater than 45 and less than 52?

2. Before putting any bets down on roulette, you watch 100 rounds, each of which results in an integer
between 1 and 36. You count how many rounds have a result that is odd and, if the count exceeds
55, you decide the roulette wheel is unfair. Assuming the roulette wheel is fair, approximate the
probability that you make the wrong decision.

3. A factory produces Xi gadgets on day i, where the Xi are independent and identically distributed
random variables, each with mean 5 and variance 9.

(a) Approximate the probability that the total number of gadgets produced in 100 days is less than
440.

(b) Approximate the greatest value of n such that P(X1 + X2 + · · · + Xn ≥ 5n + 200) ≤ 0.05.

4. (a) A fair coin is tossed 50 times. Use the Central Limit Theorem to estimate the probability that
fewer than 20 of those tosses come up heads.

(b) A fair coin is tossed until it comes up heads for the 20th time. Use the Central Limit Theorem
to estimate the probability that more than 50 tosses are needed. (Hint: you will need the mean
and variance of a geometric random variable, which you can find in Example 2.15 of the text.)

(c) Compare your answers from parts (a) and (b). Why are they close but not exactly equal?

5. Suppose 59 percent of voters favor Proposition 666. Use the Normal approximation to estimate the
probability that a random sample of 100 voters will contain:

(a) at most 50 in favor.

(b) between 54 and 64 (inclusive) in favor.

(c) fewer than 72 in favor.

6. Each day, the probability your computer crashes is 10%, independent of every other day. Approximate
the probability of at least 87 crash-free days out of the next 100 days.

7. Suppose Z = X + Y , where X⊥Y . Z is called the convolution of two random variables. If X,Y,Z are
discrete,

pZ (z) = P (X + Y = z) =
∑

x

P(X = x ∩ Y = z − x) =
∑

x

pX (x) pY (z − x)
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If X,Y,Z are continuous,

FZ (z) = P (X + Y ≤ z) =

∫ ∞

−∞

P (Y ≤ z − X | X = x) fX(x)dx =

∫ ∞

−∞

FY (z − x) fX(x)dx

Suppose X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2).

(a) Find an expression for P(X1 < 2X2) using a similar idea to convolution, in terms of
FX1 , FX2 , fX1 , fX2. (Your answer will be in the form of a single integral, and requires no cal-
culations – do not evaluate it).

(b) Find s, where Φ (s) = P(X1 < 2X2) using the “reproductive” property of normal distributions.

8. Suppose X1, . . . , Xn are iid Poi(λ) random variables, and let Xn = 1
n
∑n

i=1 Xi, the sample mean. How
large should we choose n to be such that P

(
λ
2 ≤ Xn ≤

3λ
2

)
≥ 0.99? Use the CLT and give an answer

involving Φ−1(·). Then evaluate it exactly when λ = 1/10 using the Φ table on the last page.

9. Let X ∼ Exp(λ) and k > 1/λ.

(a) Use Markov’s inequality to bound P(X ≥ k).

(b) Use Chebyshev’s inequality to bound P(X ≥ k).

(c) What is the exact formula for P(X ≥ k)?

(d) For λk ≥ 3, how do the bounds given in parts (a), (b), and (c) compare?
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.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Table 1: Cumulative distribution function of the standard normal N(0, 1)
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