
Naïve Bayes Classifiers 

Jonathan Lee and Varun Mahadevan 



Programming Project: Spam Filter 

 

• Implement a Naive Bayes classifier for classifying emails as either 
spam or ham (= nonspam). 

• Read Jonathan Lee’s notes on the course web, read the specification 
of your program, start early, and ask for help if you get stuck! 



Spam vs. Ham 

• In the past, the bane of any email 
user’s existence 

• Less of a problem for consumers 
now, because spam filters have 
gotten really good 

• Easy for humans to identify spam, 
but not necessarily easy for 
computers 

 



The spam classification problem 

• Input: collection of emails, already labeled spam or ham 
• Someone has to label these by hand 

• Called the training data 

• Use this data to train a model that “understands” what 
makes an email spam or ham 
• We’re using a Naïve Bayes classifier, but there are other 

approaches 

• This is a Machine Learning problem (take CSE 446 for more) 

• Test your model on emails whose label isn’t provided, and 
see how well it does 
•  Called the test data 

 



Naïve Bayes in the real world 

• One of the oldest, simplest methods for classification 

• Powerful and still used in the real world/industry 
• Identifying credit card fraud 

• Identifying fake Amazon reviews 

• Identifying vandalism on Wikipedia 

• Still used (with modifications) by Gmail to prevent spam  

• Facial recognition 

• Categorizing Google News articles 

• Even used for medical diagnosis! 

 



Naïve Bayes in theory 

We will use what we’ve learned in the past few weeks.  Specifically: 

• Conditional Probability  

 𝑃 𝐴|𝐵 = 𝑃 𝐴∩𝐵
𝑃(𝐵)

 

• Bayes’ Theorem 

 𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃(𝐵)
 

• Law of Total Probability 

 𝑃(𝐴) =  𝑃 𝐴 𝐵𝑛 𝑃(𝐵𝑛)𝑛  

• Chain Rule 
𝑃 𝐴1, … , 𝐴𝑛
= 𝑃 𝐴1  𝑃 𝐴2 𝐴1 …𝑃 𝐴𝑛 𝐴𝑛−1…𝐴1  

 

• Conditional Independence of A 
and B, given C 

    𝑃 𝐴 ∩ 𝐵 𝐶 = 𝑃 𝐴 𝐶 𝑃(𝐵|𝐶) 
𝑃 𝐴 𝐵 ∩ 𝐶 = 𝑃 𝐴 𝐶  

 
 



How do we represent an email? 

SUBJECT: Top Secret Business Venture 
 
Dear Sir.  
 
First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret… 

{top, secret, business, venture, dear, sir, first, I, 
must, solicit, your, confidence, in, this, 
transaction, is, by, virture, of, its, nature, as, 
being, utterly, confidencial, and} 

• There are characteristics of emails that might give a computer a hint 
about whether it’s spam 
• Possible features: words in body, subject line, sender, message header, time 

sent 

• For this assignment, we choose to represent an email as the set 
{𝑥1, 𝑥2, … , 𝑥𝑛} of distinct words in the subject  and body 

Notice that there are no duplicate words 



Programming Project 

• Take the set {𝑥1, 𝑥2, … , 𝑥𝑛} of distinct words to represent the email. 

• We are trying to compute  

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 = ? ? ? 

• Apply Bayes’ Theorem. It’s easier to find the probability of a word appearing 
in a spam email than the reverse. 

 𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 = 

  
𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)

𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃 𝑆𝑝𝑎𝑚 + 𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝐻𝑎𝑚 𝑃(𝐻𝑎𝑚)
 



Programming Project 

• Apply the chain rule to the numerator: 

𝑃 𝑥1, 𝑥2, … 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃 𝑆𝑝𝑎𝑚 = 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚) 

• Apply the Chain Rule again to decompose this: 

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚
= 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃(𝑥2|𝑥3, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)…𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚) 

 

But this is still hard to compute.  

How could you compute 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 ? 

 

 



• Let’s simplify the problem with an assumption. 

• We will assume that the words in the email are conditionally independent 
of each other, given that we know whether or not the email is spam. 

• This is why we call this Naïve Bayes: conditional independence isn’t true.  

• So how does this help? 

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚
= 𝑃 𝑥1 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚 𝑃(𝑥2|𝑥3, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚)…𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚)
≈ 𝑃 𝑥1 𝑆𝑝𝑎𝑚 𝑃(𝑥2|𝑆𝑝𝑎𝑚)…𝑃 𝑥𝑛 𝑆𝑝𝑎𝑚 𝑃(𝑆𝑝𝑎𝑚) 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚) ≈ 𝑃(𝑆𝑝𝑎𝑚) 𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)

𝑛

𝑖=1

 

 

 



Programming Project 

•  𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑆𝑝𝑎𝑚) ≈ 𝑃(𝑆𝑝𝑎𝑚) 𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)
𝑛
𝑖=1  

• Similarly, 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛, 𝐻𝑎𝑚) ≈ 𝑃(𝐻𝑎𝑚) 𝑃(𝑥𝑖|𝐻𝑎𝑚)
𝑛
𝑖=1  

• Putting it all together 

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 ≈
𝑃(𝑆𝑝𝑎𝑚) 𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)

𝑛
𝑖=1

𝑃 𝑆𝑝𝑎𝑚  𝑃 𝑥𝑖 𝑆𝑝𝑎𝑚
𝑛
𝑖=1 + 𝑃(𝐻𝑎𝑚) 𝑃(𝑥𝑖|𝐻𝑎𝑚)

𝑛
𝑖=1

 

• 𝑃 𝑆𝑝𝑎𝑚  and 𝑃(𝐻𝑎𝑚) are just the fraction of training emails that are 
spam and ham  

• What about 𝑃 𝑥𝑖 𝑆𝑝𝑎𝑚 ? 

 

 



How spammy is a word? 

• What is 𝑃(𝑣𝑖𝑎𝑔𝑟𝑎|𝑆𝑝𝑎𝑚) asking? 

• Would be easy to count how many spam emails contain this word: 

𝑃 𝑤 𝑆𝑝𝑎𝑚 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠
  

• This seems reasonable, but there’s a problem… 

 

 

 



• Suppose the word Pokemon only appears in ham in the training data, 
never in spam 

𝑃 𝑃𝑜𝑘𝑒𝑚𝑜𝑛 𝑆𝑝𝑎𝑚 = 0 

• Since the overall spam probability is the product of such individual 
probabilities, if any of those is 0, the whole product is 0 

• Any email with the word Pokemon would be assigned a spam 
probability of 0 

 

 

 

 

• What can we do? 

 

SUBJECT: Get out of debt! 
 
Cheap prescription pills! Earn fast cash 
using this one weird trick! Meet singles 
near you and get preapproved for a low 
interest credit card! Pokemon 

definitely not spam, right? 



Laplace smoothing 

• Crazy idea: what if we pretend we’ve seen  
every outcome once already? 

• Pretend we’ve seen one more spam email 
with 𝑤, one more without 𝑤 

       𝑃 𝑤 𝑆𝑝𝑎𝑚 = 
|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤| + 1

|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠| + 2
 

• Then, 𝑃 𝑃𝑜𝑘𝑒𝑚𝑜𝑛 𝑆𝑝𝑎𝑚 > 0 

• No one word will bias the overall 
probability too much 

• General technique to avoid assuming that 
unseen events will never happen 



Naïve Bayes Overview 

• For each word w in the entire training set, count how many spam emails contain w: 

𝑃 𝑤 𝑆𝑝𝑎𝑚 = 
|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤| + 1

|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠| + 2
 

• Compute 𝑃 𝑤 𝐻𝑎𝑚  analogously 

• 𝑃(𝑆𝑝𝑎𝑚) =  
|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠|

|𝑠𝑝𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠|+|ℎ𝑎𝑚 𝑒𝑚𝑎𝑖𝑙𝑠|
 ,  𝑃(𝐻𝑎𝑚) = 1 − 𝑃(𝑆𝑝𝑎𝑚) 

• For each test email with words {𝑥1, 𝑥2, … , 𝑥𝑛},  

𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛 ≈
𝑃(𝑆𝑝𝑎𝑚) 𝑃(𝑥𝑖|𝑆𝑝𝑎𝑚)

𝑛
𝑖=1

𝑃 𝑆𝑝𝑎𝑚  𝑃 𝑥𝑖 𝑆𝑝𝑎𝑚
𝑛
𝑖=1 + 𝑃(𝐻𝑎𝑚) 𝑃(𝑥𝑖|𝐻𝑎𝑚)

𝑛
𝑖=1

 

   Output “spam” iff 𝑃 𝑆𝑝𝑎𝑚 𝑥1, 𝑥2, … , 𝑥𝑛  > 1/2 

 



Read the Notes! 

•Before starting, read Jonathan Lee’s Naïve Bayes 
Notes on the course web for precise technical details. 

•Describes how to avoid floating point underflow in 
formulas such as  𝑃 𝑥𝑖 𝑆𝑝𝑎𝑚

𝑛
𝑖=1  


